Math 24
Spring 2012
Special Assignment due Monday, May 21
This will be the last special homework assignment.
Let V be any vector space over F and W be a subspace of V. We know that V / W is a vector space, and that $T(x)=x+W$ is a linear transformation from V to V / W.

Assignment: Let V be a finite-dimensional vector space over F, and $U: V \rightarrow Z$ be a linear transformation with null space W. Show that there is a one-to-one linear transformation $\bar{U}: V / W \rightarrow Z$ such that $U=\bar{U} T$.

Note: Intuitively, this result is saying that we can think of U as a two-step transformation; first, collapse W via T; then, transform what is left via \bar{U}. The assignment, of course, asks for a proof, not an intuitive argument.

