Math 24 Spring 2012

Quiz Sample Solutions

Monday, May 21

1. In the inner product space \mathbb{C}^2 with the standard inner product, compute ||(1,i)||.

$$||(1,i)|| = \sqrt{\langle (1,i), (1,i) \rangle} = \sqrt{(1)(1) + (i)(-i)} = \sqrt{2}$$

- 2. Suppose $\beta = \{v_1, v_2, v_3\}$ is an orthonormal basis for \mathbb{R}^3 , and $v_1 = \left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right)$. If the coordinates of (1, 1, 1) in basis β are $[(1, 1, 1)]_{\beta} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, what is a? $a = \left\langle (1, 1, 1), \left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right) \right\rangle = \boxed{\frac{19}{13}}$
- 3. Suppose the vector space $P_1(\mathbb{R})$ is given the inner product

$$\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x) \, dx$$

If W = span(1), find a basis for W^{\perp} .

$$\langle 1, x \rangle = \int_{-1}^{1} x \, dx = 0$$
 so a basis for W^{\perp} is $[x]$

- 4. If $A \in M_{n \times n}(\mathbb{R})$, which of the following are equivalent to "A is diagonalizable"? Circle all correct answers.
 - (a) The characteristic polynomial of A splits.
 - (b) \mathbb{R}^n is the direct sum of eigenspaces of A.
 - (c) \mathbb{R}^n has a basis consisting of eigenvectors of A.