Math 24
 Spring 2012

Quiz Sample Solutions
 Monday, May 21

1. In the inner product space \mathbb{C}^{2} with the standard inner product, compute $\|(1, i)\|$.

$$
\|(1, i)\|=\sqrt{\langle(1, i),(1, i)\rangle}=\sqrt{(1)(1)+(i)(-i)}=\sqrt{2}
$$

2. Suppose $\beta=\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal basis for \mathbb{R}^{3}, and $v_{1}=\left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right)$. If the coordinates of $(1,1,1)$ in basis β are $[(1,1,1)]_{\beta}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$, what is a ?

$$
a=\left\langle(1,1,1),\left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right)\right\rangle=\frac{19}{13}
$$

3. Suppose the vector space $P_{1}(\mathbb{R})$ is given the inner product

$$
\langle p(x), q(x)\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

If $W=\operatorname{span}(1)$, find a basis for W^{\perp}.

$$
\langle 1, x\rangle=\int_{-1}^{1} x d x=0 \text { so a basis for } W^{\perp} \text { is }\{x\}
$$

4. If $A \in M_{n \times n}(\mathbb{R})$, which of the following are equivalent to " A is diagonalizable"? Circle all correct answers.
(a) The characteristic polynomial of A splits.
(b) \mathbb{R}^{n} is the direct sum of eigenspaces of A.
(c) \mathbb{R}^{n} has a basis consisting of eigenvectors of A.
