Math 24
Spring 2012
Quiz
Monday, April 23

Sample Solutions

1. If $A=\left(\begin{array}{cc}1 & 0 \\ 2 & -2 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & 5 & 7 \\ -1 & 3 & 0\end{array}\right)$, find the following entries in the product matrices.

$$
(A B)_{12}=5 \quad(B A)_{12}=\boxed{-3}
$$

2. Suppose $T: V \rightarrow W$ is a linear function between n-dimensional vector spaces over a field F. List three different conditions, other than " T is one-to-one" and " T is onto," that will guarantee T is invertible.
$n(T)=0$
$r(T)=n$
$N(T)=\{0\}$
T takes linearly independent sets to linearly independent sets
T takes a basis for V to a basis for W
$[T]_{\alpha}^{\beta}$ is invertible (where α and β are bases for V and W)
$L_{[T]_{\alpha}^{\beta}}$ is invertible
... and many other possibilities
3. If $A \in M_{2 \times 3}(\mathbb{C})$, then

The domain of L_{A} is $\mathbb{C}^{3} \quad$ The range of L_{A} is \mathbb{C}^{2}
4. TRUE OR FALSE: If $\beta=\{(1,1,0),(1,0,1),(0,1,1)\}$ is a basis for \mathbb{Q}^{3}, then $\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$ is the matrix that changes from standard coordinates to β-coordinates.

