Math 24
 Spring 2012

Sample Quiz Solutions

Monday, April 16

1. TRUE or FALSE: It is possible for a linear transformation from \mathbb{Q}^{3} to $M_{2 \times 2}(\mathbb{Q})$ to be one-to-one but not onto.

We know this because the domain has dimension 3 and the codomain has dimension 4.
2. A linear transformation from \mathbb{R}^{4} to \mathbb{R}^{3} is defined by

$$
T(x, y, z, w)=((x+y+z),(y+z+w),(x-w))
$$

Give a basis for the null space of T.

The null space is the set of vectors (x, y, z, x) satisfying the system of linear equations

$$
\begin{gathered}
x+y+z=0 \\
y+z+w=0 \\
x-w=0
\end{gathered}
$$

which can be converted by Gaussian elimination to

$$
\begin{gathered}
x-w=0 \\
y+z+w=0 \\
0=0
\end{gathered}
$$

Using the first two equations to solve for x and y, and introducing parameters s for z and t for w, we get the general solution

$$
(x, y, z, w)=(t,-s-t, s, t)
$$

We can find a basis by setting $(s, t)=(1,0)$ and $(s, t)=(0,1)$. A basis is

$$
\begin{gathered}
\{(0,-1,1,0,),(1,-1,0,1)\} \\
* * * * *
\end{gathered}
$$

A linear transformation from \mathbb{R}^{4} to \mathbb{R}^{3} is defined by

$$
T(x, y, z, w)=(x+y+z, y+z+w, x-w)
$$

This is the same linear transformation as in the preceding problem.
3. $r(T)=2$.

From the dimension theorem, since the dimension of the domain is 4 and the dimension of the null space is 2 , the dimension of the range must be $4-2$, or 2 .
(The original problem mistakenly read $R(T)$ instead of $r(T)$. The range of T is the span of the images of the basis vectors of the domain; you could have expressed $R(T)$ as the span of $(1,0,1)(1,1,0),(1,1,0)$, and $(0,1,-1)$.)
4. If β is the standard basis for \mathbb{R}^{4} and γ is the standard basis for \mathbb{R}^{3},

$$
[T]_{\beta}^{\gamma}=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & -1
\end{array}\right) .
$$

The columns of this matrix are the coordinates of the images of the basis vectors of \mathbb{R}^{4}.

