Math 24
 Spring 2012

Quiz
Monday, April 9

Sample Solutions

1. Complete the sentence: If S is a subset of a vector space V, and one of the vectors in S can be written as a linear combination of other vectors in S, then S must be
linearly dependent.
2. Explain how we can tell immediately that

$$
\{(2,3,1,0),(-1,1, .5,2),(3,3,6,6),(2,1,6,7),(5,-5,0,0)\}
$$

is not a linearly independent subset of \mathbb{R}^{4}.
There are more than 4 vectors in the subset, and \mathbb{R}^{4} has dimension 4.
$* * * * *$
The subspace W of $M_{2 \times 2}(\mathbb{R})$ consists of all matrices $\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$ whose entries satisfy a system of linear equations that can be converted by Gaussian elimination to the system

$$
\begin{gathered}
x+3 y-3 w=0 \\
-z+2 w=0
\end{gathered}
$$

3. Give the general solution to this system. (This probably involves using parameters.)

$$
\begin{aligned}
& x=-3 s+3 t \\
& y=s \\
& z=2 t \\
& w=t
\end{aligned}
$$

4. Write down a basis for W.

$$
\left\{\left(\begin{array}{cc}
-3 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right)\right\}
$$

