Spring 2012
Some Proof Principles
Generally, proving something requires some creativity; there is no recipe for producing a proof. However, there are some standard techniques that can be used, depending on the form of the statement you are trying to prove. (Note that "can" does not mean "must.") Here are a few of them.

1. To prove a statement of the form "If A, then B," assume A and prove B. Or, prove the contrapositive: "If not B, then not A," by assuming not B and proving not A.
2. To prove a statement of the form "not A," use proof by contradiction: Assume A, and deduce a contradiction, something obviously false or contradictory.
3. To prove a statement of the form "For all vectors $\mathrm{x}, \mathrm{A}(\mathrm{x})$," let x be a name for an arbitrary vector, and prove $\mathrm{A}(\mathrm{x})$.
4. To prove a statement of the form "There is a vector $x$ such that $A(x)$," find a specific example $\vec{v}$ and prove that $\mathrm{A}(\vec{v})$. (For example, prove that $\mathrm{A}(\overrightarrow{0})$.)
5. To prove a statement of the form "A and B," prove both A and B.
6. To prove a statement of the form "A or B," prove "If not A, then B," or prove "If not B, then A," or assume "Not A and not B" and deduce a contradiction. Or, consider all possible cases, and prove that in some cases A holds, and in other cases B holds.
7. In general, prove something by considering all possible cases separately. You must be sure the cases you list cover all possibilities. For an example of a proof like this, see the next page.
8. To prove something is unique, assume there are two such things, and prove they are actually equal.
9. To prove a statement of the form "There is a unique x such that $\mathrm{A}(\mathrm{x})$," prove both "There is an $x$ such that $A(x)$ " and "the $x$ such that $A(x)$ is unique." This is called proving existence and uniqueness.

Proposition: Suppose that $X \subseteq \mathbb{R}^{2}$ is a subspace of $\mathbb{R}^{2}$. (That is, $X$, with the same addition and scalar multiplication as in $\mathbb{R}^{2}$, is itself a vector space over $\mathbb{R}$.) Then $X$ must be one of

1. The zero vector space, $\{\overrightarrow{0}\}$.
2. A line through the origin.
3. All of $\mathbb{R}^{2}$.

Proof: There are three possible cases for $X$ :

1. $X$ contains no nonzero vectors.
2. $X$ contains at least one nonzero vector, and all nonzero vectors in $X$ are parallel.
3. $X$ contains at least one pair of nonzero vectors that are not parallel.

We consider each case separately.

1. $X$ must contain at least one vector, by vector space axiom (VS 3). Therefore, since $X$ does not contain any nonzero vectors, $X$ must contain the zero vector, and we have $X=\{\overrightarrow{0}\}$. That is, $X$ is the zero vector space.
2. Let $\vec{v}$ be some nonzero element of $X$. If $\vec{w}$ is any other element of $X$, either $\vec{w}=\overrightarrow{0}$ or $\vec{w}$ is parallel to $\vec{v}$; in either case, $\vec{w}$ is a scalar multiple of $\vec{v}$, that is, $\vec{w}=t \vec{v}$ for some scalar $t$.
Now, because $X$ is a vector space, $X$ is closed under multiplication by scalars, so every scalar multiple of $\vec{v}$ must be in $X$. Therefore $X$ must consist exactly of all the scalar multiples of $\vec{v}$,

$$
X=\{t \vec{v} \mid t \in \mathbb{R}\}
$$

That is, $X$ is the line through the origin in the direction of $\vec{v}$.
3. Let $\vec{v}$ and $\vec{w}$ be nonzero, nonparallel elements of $X$. Because $X$ is closed under both addition and multiplication by scalars, every vector of the form $s \vec{v}+t \vec{w}$ must be in $X$. To show $X=\mathbb{R}^{2}$, we must show every vector $\left(c_{1}, c_{2}\right) \in \mathbb{R}^{2}$ can be written in the form $s \vec{v}+t \vec{w}$.

Method 1: Argue geometrically. Since $\vec{v}$ and $\vec{w}$ are not parallel, you can get from ( 0,0 ) to any point in the plane by proceeding some distance in the direction of $\vec{v}$ and then some distance in the direction of $\vec{w}$. That is, you can express any element of $\mathbb{R}^{2}$ as the sum of a scalar multiple of $\vec{v}$ and a scalar multiple of $\vec{w}$.

Method 2: Argue algebraically.

Suppose $\vec{v}=\left(a_{1}, a_{2}\right)$ and $\vec{w}=\left(b_{1}, b_{2}\right)$. We must show that for any choice of $\left(c_{1}, c_{2}\right)$ we can find real numbers $s$ and $t$ such that

$$
s\left(a_{1}, a_{2}\right)+t\left(b_{1}, b_{2}\right)=\left(c_{1}, c_{2}\right)
$$

That is, we must show we can always solve the system of linear equations

$$
\begin{aligned}
& a_{1} s+b_{1} t=c_{1} \\
& a_{2} s+b_{2} t=c_{2}
\end{aligned}
$$

for $s$ and $t$.
(Note: I was able to come up with the following argument because I already know linear algebra. It uses Cramer's Rule, page 224 of the textbook. You might come up with a similar argument by trying to solve the system of linear equations, and seeing what you need to assume in order to solve it.)
We claim that if $a_{1} b_{2}=a_{2} b_{1}$, then $\vec{v}$ and $\vec{w}$ are parallel. Check this by cases:
(a) If $a_{1}=0$, then $a_{1} b_{2}=0$, so by assumption $a_{2} b_{1}=0$. Since $\left(a_{1}, a_{2}\right)=\vec{v} \neq(0,0)$, we must have $a_{2} \neq 0$, and so $b_{1}=0$. In this case, $\vec{v}=\left(0, a_{2}\right)$ and $\vec{w}=\left(0, b_{2}\right)$ are parallel.
(b) If $a_{2}=0$, a similar argument shows $\vec{v}$ and $\vec{w}$ are parallel.
(c) If $a_{1} \neq 0$ and $a_{2} \neq 0$, we can divide $a_{1} b_{2}=a_{2} b_{1}$ by $a_{1} a_{2}$ to get

$$
\frac{b_{2}}{a_{2}}=\frac{b_{1}}{a_{1}}=d
$$

from which we have

$$
d\left(a_{1}, a_{2}\right)=\left(d a_{1}, d a_{2}\right)=\left(\frac{b_{1}}{a_{1}} a_{1}, \frac{b_{2}}{a_{2}} a_{2}\right)=\left(b_{1}, b_{2}\right)
$$

showing $\vec{v}$ and $\vec{w}$ are parallel.
Since $\vec{v}$ and $\vec{w}$ are not parallel, $a_{1} b_{2} \neq a_{2} b_{1}$, and so $a_{1} b_{2}-a_{2} b_{1} \neq 0$, In that case, we can check that

$$
s=\frac{c_{1} b_{2}-c_{2} b_{1}}{a_{1} b_{2}-a_{2} b_{1}} \quad t=\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{2} b_{2}-a_{2} b_{1}}
$$

is a solution of the system of linear equations.

