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Some Proof Principles

Generally, proving something requires some creativity; there is no recipe for producing
a proof. However, there are some standard techniques that can be used, depending on the
form of the statement you are trying to prove. (Note that “can” does not mean “must.”)
Here are a few of them.

1. To prove a statement of the form “If A, then B,” assume A and prove B. Or, prove the
contrapositive: “If not B, then not A,” by assuming not B and proving not A.

2. To prove a statement of the form “not A,” use proof by contradiction: Assume A, and
deduce a contradiction, something obviously false or contradictory.

3. To prove a statement of the form “For all vectors x, A(x),” let x be a name for an
arbitrary vector, and prove A(x).

4. To prove a statement of the form “There is a vector x such that A(x),” find a specific
example ~v and prove that A(~v). (For example, prove that A(~0).)

5. To prove a statement of the form “A and B,” prove both A and B.

6. To prove a statement of the form “A or B,” prove “If not A, then B,” or prove “If not
B, then A,” or assume “Not A and not B” and deduce a contradiction. Or, consider
all possible cases, and prove that in some cases A holds, and in other cases B holds.

7. In general, prove something by considering all possible cases separately. You must be
sure the cases you list cover all possibilities. For an example of a proof like this, see
the next page.

8. To prove something is unique, assume there are two such things, and prove they are
actually equal.

9. To prove a statement of the form “There is a unique x such that A(x),” prove both
“There is an x such that A(x)” and “the x such that A(x) is unique.” This is called
proving existence and uniqueness.
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Proposition: Suppose that X ⊆ R2 is a subspace of R2. (That is, X, with the same
addition and scalar multiplication as in R2, is itself a vector space over R.) Then X must
be one of

1. The zero vector space, {~0}.

2. A line through the origin.

3. All of R2.

Proof: There are three possible cases for X:

1. X contains no nonzero vectors.

2. X contains at least one nonzero vector, and all nonzero vectors in X are parallel.

3. X contains at least one pair of nonzero vectors that are not parallel.

We consider each case separately.

1. X must contain at least one vector, by vector space axiom (VS 3). Therefore, since
X does not contain any nonzero vectors, X must contain the zero vector, and we have
X = {~0}. That is, X is the zero vector space.

2. Let ~v be some nonzero element of X. If ~w is any other element of X, either ~w = ~0 or
~w is parallel to ~v; in either case, ~w is a scalar multiple of ~v, that is, ~w = t~v for some
scalar t.

Now, because X is a vector space, X is closed under multiplication by scalars, so every
scalar multiple of ~v must be in X. Therefore X must consist exactly of all the scalar
multiples of ~v,

X = {t~v | t ∈ R}.

That is, X is the line through the origin in the direction of ~v.

3. Let ~v and ~w be nonzero, nonparallel elements of X. Because X is closed under both
addition and multiplication by scalars, every vector of the form s~v + t~w must be in X.
To show X = R2, we must show every vector (c1, c2) ∈ R2 can be written in the form
s~v + t~w.

Method 1: Argue geometrically. Since ~v and ~w are not parallel, you can get from (0, 0)
to any point in the plane by proceeding some distance in the direction of ~v and then
some distance in the direction of ~w. That is, you can express any element of R2 as the
sum of a scalar multiple of ~v and a scalar multiple of ~w.

Method 2: Argue algebraically.
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Suppose ~v = (a1, a2) and ~w = (b1, b2). We must show that for any choice of (c1, c2) we
can find real numbers s and t such that

s(a1, a2) + t(b1, b2) = (c1, c2).

That is, we must show we can always solve the system of linear equations

a1s + b1t = c1

a2s + b2t = c2

for s and t.

(Note: I was able to come up with the following argument because I already know
linear algebra. It uses Cramer’s Rule, page 224 of the textbook. You might come up
with a similar argument by trying to solve the system of linear equations, and seeing
what you need to assume in order to solve it.)

We claim that if a1b2 = a2b1, then ~v and ~w are parallel. Check this by cases:

(a) If a1 = 0, then a1b2 = 0, so by assumption a2b1 = 0. Since (a1, a2) = ~v 6= (0, 0),
we must have a2 6= 0, and so b1 = 0. In this case, ~v = (0, a2) and ~w = (0, b2) are
parallel.

(b) If a2 = 0, a similar argument shows ~v and ~w are parallel.

(c) If a1 6= 0 and a2 6= 0, we can divide a1b2 = a2b1 by a1a2 to get

b2

a2

=
b1

a1

= d,

from which we have

d(a1, a2) = (da1, da2) =

(
b1

a1

a1,
b2

a2

a2

)
= (b1, b2),

showing ~v and ~w are parallel.

Since ~v and ~w are not parallel, a1b2 6= a2b1, and so a1b2 − a2b1 6= 0, In that case, we
can check that

s =
c1b2 − c2b1

a1b2 − a2b1

t =
a1c2 − a2c1

a2b2 − a2b1

is a solution of the system of linear equations.
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