Math 24
 Spring 2012
 Problems from Monday April 9

First some definitions. If W_{1} and W_{2} are two subspaces of V, we define

$$
W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1} \& w_{2} \in W_{2}\right\}
$$

In other words, $W_{1}+W_{2}$ is the collection of all vectors you can get by adding an element of W_{1} to an element of W_{2}. If $W_{1}+W_{2}=V$ and $W_{1} \cap W_{2}=\{0\}$, then we say V is the direct sum of W_{1} and W_{2}, and we write $V=W_{1} \oplus W_{2}$.

1. Prove that $W_{1}+W_{2}$ is the smallest subspace containing both W_{1} and W_{2}. (In other words, $W_{1}+W_{2}$ is the span of $W_{1} \cup W_{2}$.)

To see $W_{1}+W_{2}$ is a subspace, check closure under addition and under multiplication by scalars. Let $w_{1}+w_{2}$ and $w_{1}^{\prime}+w_{2}^{\prime}$ be any elements of $W_{1}+W_{2}$, where $w_{1}, w_{1}^{\prime} \in W_{1}$ and $w_{2}, w_{2}^{\prime} \in W_{2}$, and let a be any scalar. Then, since W_{1} and W_{2} are closed under addition and under multiplication by scalars,

$$
\begin{aligned}
\left(w_{1}+w_{2}\right)+\left(w_{1}^{\prime}+w_{2}^{\prime}\right) & =\left(w_{1}+w_{1}^{\prime}\right)+\left(w_{2}+w_{2}^{\prime}\right) \in W_{1}+W_{2}, \\
a\left(w_{1}+w_{2}\right) & =a w_{1}+a w_{2} \in W_{1}+W_{2} .
\end{aligned}
$$

Also, $W_{1} \subseteq W_{1}+W_{2}$, since every $w_{1} \in W_{1}$ can be written $w_{1}=w_{1}+0 \in$ $W_{1}+W_{2}$. For the same reason, $W_{2} \subseteq W_{1}+W_{2}$. We have shown $W_{1}+W_{2}$ is a subspace containing both W_{1} and W_{2}.
Clearly every element $w_{1}+w_{2}$ of $W_{1}+W_{2}$ is in $\operatorname{span}\left(W_{1}+W_{2}\right)$ so $W_{1}+W_{2} \subseteq \operatorname{span}\left(W_{1} \cup W_{2}\right)$.
To show $W_{1}+W_{2}=\operatorname{span}\left(W_{1} \cup W_{2}\right)$, it remains only to show that $\operatorname{span}\left(W_{1} \cup W_{2}\right) \subseteq W_{1}+W_{2}$. But this must be true, because we have shown $W_{1}+W_{2}$ is a subspace containing $W_{1} \cup W_{2}$, and $\operatorname{span}\left(W_{1} \cup W_{2}\right)$ is the smallest such subspace.
We could also show $\operatorname{span}\left(W_{1} \cup W_{2}\right) \subseteq W_{1}+W_{2}$ directly. Let $w \in$ $\operatorname{span}\left(W_{1}+W_{2}\right)$. We can write w as a linear combination of elements of $W_{1} \cup W_{2}$,

$$
w=a_{1} u_{1}+\cdots+a_{n} u_{n}+b_{1} v_{1}+\cdots b_{m} v_{m}
$$

where $u_{i} \in W_{1}$ and $v_{j} \in W_{2}$. But then, $a_{1} u_{1}+\cdots+a_{n} u_{n} \in W_{1}$, and $b_{1} v_{1}+\cdots+b_{m} v_{m} \in W_{2}$, and

$$
w=\left(a_{1} u_{1}+\cdots+a_{n} u_{n}\right)+\left(b_{1} v_{1}+\cdots b_{m} v_{m}\right) \in W_{1}+W_{2},
$$

so $\operatorname{span}\left(W_{1} \cup W_{2}\right) \subseteq W_{1}+W_{2}$.
2. Give examples of pairs of subspaces W_{1} and W_{2} of \mathbb{R}^{3}, neither of which is contained in the other, such that:
(a) $W_{1}+W_{2} \neq \mathbb{R}^{3}$. In your example, what is $W_{1}+W_{2}$?
(b) $W_{1}+W_{2}=\mathbb{R}^{3}$, but \mathbb{R}^{3} is not the direct sum of W_{1} and W_{2}. In your example, what is $W_{1} \cap W_{2}$?
(c) \mathbb{R}^{3} is the direct sum of W_{1} and W_{2}.

This is a homework problem.
3. Suppose W_{1} and W_{2} are both subspaces of a finite-dimensional vector space V. Make a conjecture about the relationship among the dimensions of $W_{1}, W_{2}, W_{1} \cap W_{2}$, and $W_{1}+W_{2}$.

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right) .
$$

Intuitively, we add up the number of dimensions in W_{1} and W_{2}, and then subtract the number of dimensions in the overlap, because they were counted twice.
4. Express $M_{2 \times 2}(\mathbb{C})$ as the direct sum of two nonzero subspaces.

There are many possible answers. A straightforward one is:

$$
W_{1}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right) \right\rvert\, a, b \in \mathbb{C}\right\} \quad W_{2}=\left\{\left.\left(\begin{array}{ll}
0 & 0 \\
c & d
\end{array}\right) \right\rvert\, c, d \in \mathbb{C}\right\}
$$

A possibly more interesting solution is to let W_{1} be the subspace of matrices with zero trace, and W_{2} be the subspace of diagonal matrices whose two diagonal entries are equal. It's easy to see their intersection contains only the zero matrix. You can see that together they span the entire space by writing down simple bases for W_{1} and W_{2},

$$
\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\} \text { and }\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

and observing that from them you can generate all the standard basis elements.
5. Express $P(\mathbb{R})$ as the direct sum of two nonzero subspaces in two ways.
(a) One of the subspaces has finite dimension.
(b) Both of the subspaces are infinite-dimensional.

This is a homework problem.
6. Prove the conjecture you made in problem (3). Hint: A basis $\left\{x_{1}, \ldots, x_{k}\right\}$ for $W_{1} \cap W_{2}$ can be extended to a basis $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots y_{n}\right\}$ for W_{1}. It can also be extended to a basis $\left\{x_{1}, \ldots, x_{k}, z_{1}, \ldots z_{m}\right\}$ for W_{2}. For homework, you might want to verify your conjecture by looking at problem 29(a) of section 1.6 of the textbook. Please make a conjecture yourself first, though.

This is a challenging homework problem.
7. Every vector in $W_{1}+W_{2}$ can be expressed as a sum, $w_{1}+w_{2}$, of vectors $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. In what cases is this expression unique? Prove your answer is correct.

This answer is unique just in case $W_{1} \cap W_{2}=\{0\}$; that is, just in case the sum $W_{1}+W_{2}$ is a direct sum.
To show this, first suppose $W_{1}+W_{2} \neq\{0\}$, and let w be a nonzero element of $W_{1} \cap W_{2}$. Then w can be expressed as a sum of a vector from W_{1} and a vector from W_{2} in more than one way, namely as $w+0$ and as $0+w$.
Conversely, suppose that $W_{1} \cap W_{2}=\{0\}$. We must show any vector $w \in W_{1}+W_{2}$ can be expressed as a sum of a vector from W_{1} and a vector from W_{2} in only one way. To do this, suppose we have two such expressions $w=w_{1}+w_{2}$ and $w=w_{1}+w_{2}^{\prime}$. We must show $w_{1}=w_{1}^{\prime}$ and $w_{2}=w_{2}^{\prime}$.
We have $w_{1}+w_{2}=w_{1}^{\prime}+w_{2}^{\prime}$, which we can rewrite as $w_{1}-w_{1}^{\prime}=w_{2}^{\prime}-w_{2}$. Thus $w_{1}-w_{1}^{\prime}$ is in both W_{1} and W_{2}. The only vector in both W_{1} and W_{2} is 0 , so $w_{1}-w_{1}^{\prime}=0$, and $w_{1}=w_{1}^{\prime}$. The same argument shows that $w_{2}=w_{2}^{\prime}$.

