Math 24

Spring 2012

Problems from Monday April 9

First some definitions. If W_{1} and W_{2} are two subspaces of V, we define

$$
W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1} \& w_{2} \in W_{2}\right\}
$$

In other words, $W_{1}+W_{2}$ is the collection of all vectors you can get by adding an element of W_{1} to an element of W_{2}. If $W_{1}+W_{2}=V$ and $W_{1} \cap W_{2}=\{0\}$, then we say V is the direct sum of W_{1} and W_{2}, and we write $V=W_{1} \oplus W_{2}$.

1. Prove that $W_{1}+W_{2}$ is the smallest subspace containing both W_{1} and W_{2}. (In other words, $W_{1}+W_{2}$ is the span of $W_{1} \cup W_{2}$.)
2. Give examples of pairs of subspaces W_{1} and W_{2} of \mathbb{R}^{3}, neither of which is contained in the other, such that:
(a) $W_{1}+W_{2} \neq \mathbb{R}^{3}$. In your example, what is $W_{1}+W_{2}$?
(b) $W_{1}+W_{2}=\mathbb{R}^{3}$, but \mathbb{R}^{3} is not the direct sum of W_{1} and W_{2}. In your example, what is $W_{1} \cap W_{2}$?
(c) \mathbb{R}^{3} is the direct sum of W_{1} and W_{2}.
3. Suppose W_{1} and W_{2} are both subspaces of a finite-dimensional vector space V. Make a conjecture about the relationship among the dimensions of $W_{1}, W_{2}, W_{1} \cap W_{2}$, and $W_{1}+W_{2}$.
4. Express $M_{2 \times 2}(\mathbb{C})$ as the direct sum of two nonzero subspaces.
5. Express $P(\mathbb{R})$ as the direct sum of two nonzero subspaces in two ways.
(a) One of the subspaces has finite dimension.
(b) Both of the subspaces are infinite-dimensional.
6. Prove the conjecture you made in problem (3). Hint: A basis $\left\{x_{1}, \ldots, x_{k}\right\}$ for $W_{1} \cap W_{2}$ can be extended to a basis $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots y_{n}\right\}$ for W_{1}. It can also be extended to a basis $\left\{x_{1}, \ldots, x_{k}, z_{1}, \ldots z_{m}\right\}$ for W_{2}. For homework, you might want to verify your conjecture by looking at problem 29(a) of section 1.6 of the textbook. Please make a conjecture yourself first, though.
7. Every vector in $W_{1}+W_{2}$ can be expressed as a sum, $w_{1}+w_{2}$, of vectors $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. In what cases is this expression unique? Prove your answer is correct.
