
Math 24
Spring 2012

Wednesday, April 4
Sample Solutions

1. Find a set of linearly independent vectors whose span is the plane in
R3 with equation

3x− 2y + z = 0.

Sample Solution:

Since this subspace is a plane, we need two non-collinear vectors to
span it. One way to find them is by inspection. For example, we can
rewrite the equation as z = 2y − 3x, then set one of x and y to 1 and
the other to 0 to get solutions (1, 0,−3) and (0, 1, 2).

A General Method:

In general we might have m equations a1x1 + · · · + anxn = 0 in n
variables, and ask for a linearly independent set spanning the collection
of vectors (x1, x2, . . . , xn) whose entries x1, x2, . . . , xn are solutions of
the system. A general method that works begins by using Gaussian
elimination to solve the system.

For our (very simple) system, we identify the first equa-
tion as the x-equation, and divide through by 3 to get an
x-coefficient of 1:

x − 2

3
y +

1

3
z = 0.

If there were more equations, we would eliminate x in the
other equations, then go on to identify a y-equation, if pos-
sible, and so on. Since there aren’t, we are done with this
part.

We will have equations for some variables but (possibly) not for others.
We introduce parameters for the variables without equations, and solve
for the other variables by using their equations.
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In our example, since there is no y-equation and no z-equation,
y and z can be anything, so we introduce parameters, setting
y = s and z = t. Then we use the x-equation to solve for x,

getting x =
2

3
y − 1

3
z, and so we have

(x, y, z) =

(
2

3
s− 1

3
t, s, t

)
= s

(
2

3
, 1, 0

)
+ t

(
−1

3
, 0, 1

)
.

Now every way of setting one of our parameters to 1 and the rest to 0
gives a vector in the solution space. The method guarantees that these
vectors span the space.

In our example, we first set (s, t) = (1, 0) and then set (s, t) =
(0, 1) to get our two vectors,{(

2

3
, 1, 0

)
,

(
−1

3
, 0, 1

)}
.
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2. Give an example of three linearly dependent vectors in R3, none of
which is a multiple of any other.

Sample Solution:

Because our three vectors must be linearly dependent, they must lie in
a single plane containing the origin; because none can be a multiple of
any other, no two can be parallel.

An easy solution is to pick three vectors in the xy-plane, no two of
which are parallel, such as

{(1, 0, 0), (0, 1, 0), (1, 1, 0)}.

It will always work to take two vectors ~u and ~v, neither of which is a
multiple of the other, and take ~u + ~v as your third vector.
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3. Find a linearly independent subset of{(
1 0
0 1

)
,

(
1 1
1 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)}
with the same span.

Sample Solution:

We can see by inspection that the second matrix is the sum of the first
and third, so we can eliminate it without changing the span of the set.
This gives us {(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)}
.

This set is linearly independent. We can see that because if a linear
combination of its elements equals the zero matrix, then the coefficient
of the second matrix must be 0 (otherwise there would be a nonzero
entry in the lower left), therefore the coefficient of the third matrix
must be 0 (otherwise there would be a nonzero entry in the upper
right), therefore the coefficient of the first matrix must be 0.

“By inspection” and “we can see” means we’re lucky these matrices
are simple enough so we can just look at them and tell whether they’re
linearly independent. Suppose they weren’t?

Let’s call the given matrices M1, M2, M3, M4. We can check for linear
independence by finding all solutions to

a1M1 + a2M2 + a3M3 + a4M4 = 0.

If the only solution is a1 = a2 = a3 = a4 = 0, then our set is linearly
independent. If not, say we see that

M1 −M2 + M3 = 0,

this tells us we can write M2 as a linear combination of M1 and M3,
therefore we can eliminate it from the set without changing the span.

Now we apply the same technique to M1, M3, M4 to either see that this
set is linearly independent, or find another element we can eliminate.

Since the set gets smaller every time, eventually the process will come
to an end, giving us a linearly independent set with the same span.
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4. Show that if ~u and ~v are distinct elements of the vector space V , then
{~u,~v} is linearly dependent if and only if one of ~u, ~v is a scalar multiple
of the other.

Sample Solution:

If one of the vectors is a scalar multiple of the other, say a~v = ~u, then
we have ~u − a~v = ~0, a nontrivial linear combination equal to zero, so
{~u,~v} is linearly dependent.

Conversely, suppose {~u,~v} is linearly dependent. This means there is
a nontrivial linear combination equal to zero, a~u+ b~v = ~0, where a and
b are not both zero. Without loss of generality, a 6= 0. Then we can
rewrite our equation as a~u = −b~v, or

~u =

(
−b

a

)
~v.

Comment: The converse of “if A then B” is “if B then A.”
So “conversely” means that we have just finished proving one
direction of an “if and only if” statement, and are about to
prove the other.

“Without loss of generality” is a very useful phrase. It means
that it looks like we are considering only one case, but that’s
okay, because all cases work the same way. In this example,
we don’t have to consider the case b 6= 0, because the proof
is exactly the same as in the case a 6= 0.

You may notice I tried to slip the same thing by in the first
part of the proof, by writing “say a~v = ~u,” implying that if
we said a~u = ~v the proof would be the same.
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5. Show that a set of vectors {~x1, ~x2, . . . , ~xn} is linearly dependent if and
only if either ~x1 = ~0, or there is some k < n such that ~xk+1 is a linear
combination of the vectors ~x1, . . . , ~xk.

Note: The point of this result is that, if you want to build a linearly
independent set of vectors, as long as you start with a nonzero vector,
keep adding vectors one at a time, and never add a vector that is a
linear combination of the ones you already have, then you can’t go
wrong.

Sample Solution:

One direction is easy: If ~x1 = ~0 then the set is linearly dependent (any
set containing the zero vector is linearly dependent). If we can write
some ~xk+1 as a linear combination of the vectors ~x1, . . . , ~xk,

~xk+1 = a1~x1 + · · ·+ ak~xk,

then also the set is linearly dependent, because there is a nontrivial
linear combination of vectors from the set that equals zero,

~xk+1 − a1~x1 − · · · − ak~xk = ~0.

For the other direction, assume the set is linearly dependent, and show
that either ~x1 = ~0 or we can write some ~xk+1 as a linear combination
of vectors ~x1, . . . , ~xk.

To do this, suppose the set is linearly dependent. Therefore there is
some nontrivial linear combination that is equal to zero,

a1~x1 + · · ·+ an~xn = ~0,

where not all the scalars ai equal 0.

If a1 is the only nonzero scalar, we have a1~x1 = ~0, and we can multiply
both sides by (a1)

−1 to get ~x1 = ~0.

If not, let ak+1 be the last nonzero scalar, so we have

a1~x1 + a2~x2 + · · ·+ ak+1~xk+1 = ~0,
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where ak+1 6= 0. we can rewrite this equation as

ak+1~xk+1 = −a1~x1 − a2~x2 − · · · − ak~xk,

and then multiply both sides by (ak+1)
−1 to write ~xk+1 as a linear

combination of ~x1, . . . , ~xk.

Another Possibility:

We can show that if {~x1, ~x2, . . . , ~xn} is linearly dependent, then either
~x1 = ~0, or there is some k < n such that ~xk+1 is a linear combination
of the vectors ~x1, . . . , ~xk, by induction on n.

Comment: We say induction “on n” because we are proving
that “for every n, . . . ,” and our base case and inductive step
deal with different values of n. If there is more than one
relevant integer, it’s important to specify which one you are
doing induction on.

Base Case: (n = 1) We have already seen that if {~x1} is linearly de-
pendent, then ~x1 = ~0.

Comment: When I outlined proof by induction in class, I
said the base case was n = 0. Here I use n = 1, because the
statement of the theorem only applies to sets with at least
1 element. Your base case is the smallest number you are
interested in.

The base case is often (but not always) particularly easy.

Inductive Step: Assume this is true for a linearly independent set of
size n, and show it is true for a linearly independent set of size n + 1.

Comment: “Assume this is true” sounds like assuming what
you are trying to prove, but it really isn’t. You have just
proved the theorem holds for n = 1, so you know it’s true
for some numbers. Here, we are saying, “Assume that n is a
number for which the theorem holds, and show that n + 1 is
another number for which the theorem holds.”

In other words, we are showing the set of numbers for which
the theorem holds is closed under adding 1 — if n is in, so
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is n + 1. Then we use the fact that a set that contains 1 and
is closed under adding 1 must contain every positive integer,
to conclude that the theorem holds for all positive integers.

Terminology: The hypothesis of the inductive step, in our
case “the theorem is true for a linearly independent set of
size n,” is called the inductive hypothesis.

Suppose, then, that {~x1, ~x2, . . . , ~xn, ~xn+1} is linearly dependent.

Case 1: Suppose {~x1, ~x2, . . . , ~xn} is linearly dependent. Then by induc-
tive hypothesis, either ~x1 = ~0, or for some k < n, we can write ~xk+1 as
a linear combination of ~x1, ~x2, . . . , ~xk.

Comment: “By inductive hypothesis” is common phrasing
in proofs by induction. The reader is supposed to know this
means “because we assumed the theorem holds for n.”

Case 2: Suppose {~x1, ~x2, . . . , ~xn} is linearly independent. Because the
entire set is linearly dependent, there is a nontrivial linear combination
of its elements that equals ~0,

a1~x1 + a2~x2 + · · ·+ an~xn + an+1~xn+1 = ~0,

where not all ai are zero. It must be the case that an+1 6= 0, because
otherwise we would have a nontrivial linear combination

a1~x1 + a2~x2 + · · ·+ an~xn = ~0,

which can’t happen because ~x1, ~x2, . . . , ~xn are linearly independent.
Therefore we can express ~xn+1 as a linear combination of ~x1, ~x2, . . . , ~xn:

~xn+1 =
−a1

an+1

~x1 +
−a2

an+1

~x2 + · · ·+ −an

an+1

~xn.

This completes the proof.
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Another example of a proof by mathematical induction. We will prove
this result later in the textbook.

Proposition: If

a11x1 + a12x2 + · · ·+ a1nxn = d1,

a21x1 + a22x2 + · · ·+ a2nxn = d2,

...

am1x1 + am2x2 + · · ·+ amnxn = dm,

is a system m linear equations in n variables over an infinite field F , and
m < n, then the system has either no solutions or infinitely many.

Proof: By induction on m.

Base Case: If m = 1 then we have one equation

a11x1 + a12x2 + · · ·+ a1nxn = d1,

and n is at least 2.
If a1i = 0 for all i, and d1 = 0, then any values of the xi constitute a

solution, so there are infinitely many solutions.
If a1i = 0 for all i, and d1 6= 0, then there are no solutions.
If some a1i 6= 0, without loss of generality say a11 6= 0, then our equation

can be rewritten as

x1 = d1 +
−a12

a11

x2 + · · ·+ −a1n

a11

xn.

Since we can take any values of x2, . . . xn and choose x1 accordingly to get a
solution, and n ≥ 2, there are infinitely many solutions.

Inductive Step: Assume that a system of m linear equations in more than
m variables has either no solutions or infinitely many solutions. Show the
same is true for a system of m + 1 linear equations in more than m + 1
variables.

Our system is

a11x1 + a12x2 + · · ·+ a1nxn = d1,

a21x1 + a22x2 + · · ·+ a2nxn = d2,
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...

am1x1 + am2x2 + · · ·+ amnxn = dm,

a(m+1)1x1 + a(m+1)2x2 + · · ·+ a(m+1)nxn = dm+1,

where n > m + 1.
If a(m+1)i = 0 for all i, and dm+1 6= 0, then there are no solutions.
If a(m+1)i = 0 for all i, and dm+1 = 0, then the last equation is 0 = 0,

and we can eliminate it. This leaves us with m equations in more than m
variables, so by inductive hypothesis, there are either no solutions or infinitely
many.

Otherwise, some a(m+1)i 6= 0; without loss of generality, say a(m+1)n 6= 0.
Then we can use the last equation to solve for xn,

xn = b1x1 + b2x2 + · · ·+ bn−1xn−1 + d.

Substituting this expression for xn in the first m equations gives us m equa-
tions in n− 1 variables, and since n > m + 1, we have n− 1 > m. Therefore,
by inductive hypothesis, this system in variables x1, x2, . . . xn−1 has either no
solutions or infinitely many solutions. If it has none, neither does our original
system. If it has infinitely many, each one can be extended to a solution to
our original system by setting

xn = b1x1 + b2x2 + · · ·+ bn−1xn−1 + d,

and so our original system has infinitely many solutions.
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