Math 24
 Spring 2012
 Friday, March 30

1. In the last class we said that the subspaces of \mathbb{R}^{2} are
(a) The zero subspace, $\{(0,0)\}$.
(b) Any line through the origin.
(c) The entire space \mathbb{R}^{2}.

What are the subspaces of \mathbb{R}^{3} ?
(You do not have to prove your answer is correct.)

There are four possibilities now:
(a) The zero subspace, $\{(0,0)\}$.
(b) Any line through the origin.
(c) Any plane through the origin.
(d) The entire space \mathbb{R}^{3}.

We will see later that this is a general fact: An n-dimensional vector space has subspaces of every dimension between 0 and n.
2. What is the smallest subspace of \mathbb{R}^{3} containing the vectors $(1,0,0)$ and ($0,1,1$). (Give an algebraic description, not a geometric one.)

It is the subspace W consisting of all vectors of the form (a, b, b). (Or, all vectors (x, y, z) satisfying the equation $y-z=0$.)
First, we can see that W is a subspace, because it contains $(0,0,0)$, the sum of two vectors with equal y - and z-components has equal y and z-components, and a scalar multiple of a vector with equal y - and z-components has equal y - and z-components. (W is closed under addition and multiplication by scalars.)
Clearly W contains $(1,0,0)$ and $(0,1,1)$.
To see that W is the smallest possible such subspace, show that any subspace W^{\prime} containing $(1,0,0)$ and $(0,1,1)$ must contain every vector in W. This is true because every vector $\vec{w} \in W$ can be written in the form

$$
\vec{w}=(a, b, b)=a(1,0,0)+b(0,1,1),
$$

and since \vec{W}^{\prime} contains $(1,0,0)$ and $(0,1,1)$ and is closed under multiplication by scalars and under addition, W^{\prime} must also contain $a(1,0,0)+$ $b(0,1,1)$.
3. What is the smallest subspace of $P_{2}(\mathbb{R})$ containing the polynomials x^{2} and $x+1$?

By exactly the same reasoning, it consists of all polynomials of the form $a x^{2}+b x+b$.
4. Suppose V is a vector space and \vec{x} and \vec{y} are elements of V. What can you say about the smallest subspace of V containing \vec{x} and \vec{y} ?

It consists of all vectors of the form $a \vec{x}+b \vec{y}$.
Similarly, the smallest subspace of V containing \vec{x}, \vec{y}, and \vec{z} consists of all vectors of the form $a \vec{x}+b \vec{y}+c \vec{z}$.

Some vocabulary that the textbook will define shortly:
A vector of the form $a_{1} \vec{x}_{1}+a_{2} \vec{x}_{2}+\cdots+a_{n} \vec{x}_{n}$ is called a linear combination of $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$. The collection of all linear combinations of vectors from a set of vectors X is called the span of X.
It makes sense that the span of X is the smallest subspace containing X. It is also called the subspace generated by X.
5. Show that, for any real numbers a, b, c, and d, the set of matrices $\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)$ in $M_{2 \times 2}(\mathbb{R})$ whose entries satisfy the equation

$$
a\left(m_{11}\right)+b\left(m_{12}\right)+c\left(m_{21}\right)+d\left(m_{22}\right)=0
$$

is a subspace of $M_{2 \times 2}(\mathbb{R})$.

To show \vec{W} is a subspace, we must show that W contains the zero vector, in this case $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, and is closed under addition and multiplication by scalars.
It is clear that the entries of the zero matrix satisfy this equation.
For closure under addition, suppose the entries of $M=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)$ and $N=\left(\begin{array}{ll}n_{11} & n_{12} \\ n_{21} & n_{22}\end{array}\right)$ satisfy the equation. Then the entries of

$$
M+N=\left(\begin{array}{ll}
m_{11}+n_{11} & m_{12}+n_{12} \\
m_{21}+n_{21} & m_{22}+n_{22}
\end{array}\right)
$$

also satisfy the equation, since

$$
\begin{gathered}
a\left(m_{11}+n_{11}\right)+b\left(m_{12}+n_{12}\right)+c\left(m_{21}+n_{21}\right)+d\left(m_{22}+n_{22}\right)= \\
a\left(m_{11}\right)+b\left(m_{12}\right)+c\left(m_{21}\right)+d\left(m_{22}+\right)+a\left(n_{11}\right)+b\left(n_{12}\right)+c\left(n_{21}\right)+d\left(n_{22}\right)= \\
0+0=0 .
\end{gathered}
$$

Closure under multiplication by scalars is similar.
6. Show that the set of all differentiable functions f from \mathbb{R} to \mathbb{R} that satisfy the differential equation

$$
\frac{d^{2} f}{d x^{2}}=-f
$$

is a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$ (the space of all functions from \mathbb{R} to \mathbb{R}).

We need to show that the zero function satisfies this equation (which is true, since $\frac{d^{2} 0}{d x^{2}}=0$), and that if f and g satisfy the equation,

$$
\frac{d^{2} f}{d x^{2}}=-f \quad \& \quad \frac{d^{2} g}{d x^{2}}=-g
$$

then so do $f+g$ and $c f$. This is true because

$$
\frac{d^{2}(f+g)}{d x^{2}}=\frac{d^{2} f}{d x^{2}}+\frac{d^{2} g}{d x^{2}}=(-f)+(-g)=-(f+g)
$$

and

$$
\frac{d^{2}(c f)}{d x^{2}}=c \frac{d^{2} f}{d x^{2}}=c(-f)=-(c f)
$$

This turns out to be the subspace generated by the functions $\sin x$ and $\cos x$, all functions of the form $a \sin x+b \cos x$. Because this subspace is generated by two functions, and cannot be generated by a single function, it is said to be two-dimensional.
7. Let W be the smallest subspace of $P_{3}(\mathbb{R})$ containing the polynomials $x^{3}+x^{2}, x^{2}+x$, and $x+1$. Determine whether the polynomial $x^{3}-x$ is in W.
W consists of all polynomials of the form $s\left(x^{3}+x^{2}\right)+t\left(x^{2}+x\right)+u(x+1)$, so we must see whether $x^{3}-x$ can be written in this form. That is, we need to see whether we can find numbers s, t and u satisfying

$$
s\left(x^{3}+x^{2}\right)+t\left(x^{2}+x\right)+u(x+1)=x^{3}-x
$$

that is,
$s x^{3}+(s+t) x^{2}+(t+u) x+u=x^{3}-x=1\left(x^{3}\right)+0\left(x^{2}\right)+(-1)(x)+0$.
Because equal polynomials have the same coefficients, that means we need to see whether we can solve

$$
\begin{gathered}
s=1 \\
s+t=0 \\
t+u=-1 \\
u=0
\end{gathered}
$$

This system is not too hard to solve; we get $s=1, t=-1, u=0$ for a solution. Therefore $x^{3}-x=\left(x^{3}+x^{2}\right)-\left(x^{2}+x\right)$, and $x^{3}-x$ is in fact in W.

This example leads us into the question of solving systems of linear equations, which comes up next in the reading.

