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1. In the last class we said that the subspaces of R? are

(a) The zero subspace, {(0,0)}.
(b) Any line through the origin.
(c) The entire space R?.

What are the subspaces of R3?

(You do not have to prove your answer is correct.)
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There are four possibilities now:

We will see later that this is a general fact: An n-dimensional vector
space has subspaces of every dimension between 0 and n.



2. What is the smallest subspace of R? containing the vectors (1,0, 0) and
(0,1,1). (Give an algebraic description, not a geometric one.)
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It is the subspace W consisting of all vectors of the form (a,b,b). (Or,
all vectors (x,y, z) satisfying the equation y — z = 0.)

First, we can see that W is a subspace, because it contains (0,0, 0),
the sum of two vectors with equal y- and z-components has equal y-
and z-components, and a scalar multiple of a vector with equal y- and
z-components has equal y- and z-components. (W is closed under
addition and multiplication by scalars.)

Clearly W contains (1,0,0) and (0,1, 1).

To see that W is the smallest possible such subspace, show that any
subspace W’ containing (1,0,0) and (0, 1,1) must contain every vector
in W. This is true because every vector w € W can be written in the
form

@ = (a,b,b) = a(1,0,0) + b(0,1,1),

and since W' contains (1,0, 0) and (0, 1,1) and is closed under multipli-
cation by scalars and under addition, W’ must also contain a(1,0,0) +
b(0,1,1).

3. What is the smallest subspace of P»(R) containing the polynomials x?
and x + 17
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By exactly the same reasoning, it consists of all polynomials of the form
ax? + bx + b.



4. Suppose V is a vector space and & and i are elements of V. What can
you say about the smallest subspace of V' containing ¥ and 7
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It consists of all vectors of the form ax + by.

Similarly, the smallest subspace of V' containing Z, ¥, and Z consists of
all vectors of the form aZ + by + cZ.

Some vocabulary that the textbook will define shortly:

A vector of the form a2 + as@s + - - - + a, 7, is called a linear combi-
nation of Ty, To, ..., . The collection of all linear combinations of
vectors from a set of vectors X is called the span of X.

It makes sense that the span of X is the smallest subspace containing
X. It is also called the subspace generated by X.



5. Show that , for any real numbers a, b, ¢, and d, the set of matrices

L e gy Ms.2(R) whose entries satisfy the equation
mo1 M2

a(mn) + b(m12) + C(mgl) + d(m22) =0

is a subspace of Myyo(R).
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To show W is a subspace, we must show that W contains the zero

. . 0 0 . . -
vector, in this case (0 0), and is closed under addition and multipli-
cation by scalars.

It is clear that the entries of the zero matrix satisfy this equation.

For closure under addition, suppose the entries of M = M M2
Ma1 Moz

and N = ("' M2 satisfy the equation. Then the entries of
o1 M2z

M1 N = (mn +ni1 Mg + n12>

Mo1 + Na1 Moz + Noo
also satisfy the equation, since
a(m11 + nu) + b(mlg + n12) + C(mgl + 7121) + d(mQQ + n22) =

a(mn) + b(mlg) —l—c(m21) +d(m22+) +a(n11) + b(nlg) +C(n21> +d(n22) =
04+0=0.

Closure under multiplication by scalars is similar.



6. Show that the set of all differentiable functions f from R to R that
satisfy the differential equation
d*f
—L = _f

dx?
is a subspace of F(R,R) (the space of all functions from R to R).
sk A KK

We need to show that the zero function satisfies this equation (which
2

is true, since o 0), and that if f and g satisfy the equation,
x
d*g
_f & -5 — 4,

dx?

>f
de?
then so do f 4+ ¢ and c¢f. This is true because

P(f+g) dEf N d*g

=(=f)+(=9)=—(f+9)

dz? T odz? | dx?
nd P(ef) &S
S =S = o= f) = =(ef).

This turns out to be the subspace generated by the functions sin z and
cos z, all functions of the form asinx + bcosz. Because this subspace
is generated by two functions, and cannot be generated by a single
function, it is said to be two-dimensional.



7. Let W be the smallest subspace of P3(R) containing the polynomials
2% + 22, 22 + 2, and x + 1. Determine whether the polynomial 23 — x
is in W.
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W consists of all polynomials of the form s(z3+2?)+t(z*+x)+u(z+1),
so we must see whether 22 — x can be written in this form. That is, we
need to see whether we can find numbers s, ¢ and u satisfying

s(z® +2%) +t(@* +7) +ulr +1) =2° — 7,
that is,
s+ (s+ 1)+ (t+uwr +u=a2>—2=1(2%) +0(x?) + (—1)(z) +0.

Because equal polynomials have the same coefficients, that means we
need to see whether we can solve

s=1

s+t=0
t+u=-—1
u=20

This system is not too hard to solve; we get s =1,1t=—1, u =0 for a
solution. Therefore z* — z = (2% + 2?) — (2® + ), and z* — z is in fact
in W.

This example leads us into the question of solving systems of linear
equations, which comes up next in the reading.



