
Math 24
Spring 2012

Wednesday, May 23

(1.) TRUE or FALSE? (These questions always deal with finite-dimensional inner prod-
uct spaces.)

(a.) Every self-adjoint operator is normal.

(b.) Operators and their adjoints have the same eigenvectors.

(c.) If T is an operator on an inner product space V , then T is normal if and only if [T ]β
is normal, where β is any ordered basis for V .

(d.) A real or complex matrix A is normal if and only if LA is normal.

(e.) The eigenvalues of a self-adjoint operator must all be real.

(f.) The identity and zero operators are self-adjoint.

(g.) Every normal operator is diagonalizable.

(h.) Every self-adjoint operator is diagonalizable.

Solutions are in the back of the textbook.

1



(2.) Determine whether the linear operator is normal, self-adjoint, or neither. If possible,
give an orthonormal basis of eigenvectors, with corresponding eigenvalues.

(a.) V = R2, and T (a, b) = (2a− 2b, −2a+ 5b).

The matrix of A in the standard basis is

(
2 −2
−2 5

)
, which is self-adjoint. so T is

self-adjoint.
The characteristic polynomial of A is (2− λ)(5− λ)− 4 = λ2 − 7λ+ 6 = (λ− 6)(λ− 1),

so the eigenvalues are λ = 1 and λ = 6.
An eigenvector corresponding to λ = 1 is (2, 1), and an eigenvector corresponding to λ = 6

is (1,−2). These vectors are orthogonal, so β = {
√

5
5

(2, 1),
√

5
5

(1,−2)} is an orthonormal basis
of eigenvectors.

(b.) V = C2, and T (a, b) = (2a+ ib, a+ 2b).

The matrix of A in the standard basis is

(
2 i
1 2

)
, which is not self-adjoint. so T is not

self-adjoint.

(c.) V = M2×2(R) and T (A) = At.

The matrix of A in the standard basis is


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, which is self-adjoint. so T is

self-adjoint.
The characteristic polynomial of A is (1 − λ)2(λ2 − 1) = (1 − λ)2(1 − λ)(1 + λ), so the

eigenvalues are λ = 1, with multiplicity 3, and λ = −1, with multiplicity 1.

Three eigenvectors corresponding to λ = 1 are

(
1 0
0 0

)
,

(
0 1
1 0

)
, and

(
0 0
0 1

)
, and an

eigenvector corresponding to λ = −1 is

(
0 1
−1 0

)
. These vectors are orthogonal, so β ={(

1 0
0 0

)
,

(
0 0
0 1

)
,
√

2
2

(
0 1
1 0

)
,
√

2
2

(
0 1
−1 0

)}
is an orthonormal basis of eigenvectors.

(3.) Is {A ∈Mn×n(R) | A is self-adjoint} a subspace of M2×2(R)?

Yes. It is not hard to show that 0 is self-adjoint, that if A is self-adjoint so is cA (since
(cA)t = c(At), and over R, the adjoint of a matrix is its transpose), and that if A and B are
self-adjoint, so is A+B (because (A+B)t = At +Bt).

Is {A ∈Mn×n(C) | A is self-adjoint} a subspace of M2×2(C)?

No. This set is not closed under multiplication by scalars: the identity matrix I is
self-adjoint, but iI is not, because (iI)∗ = (−i)I 6= iI.
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Cultural Enrichment

Here is an important example of an infinite-dimensional inner product space, with sig-
nificance in mathematics and in theoretical physics. It is called Hilbert space.

Define an infinite sequence of real numbers, (a1, a2, a3, . . . , an . . . ) to be square summable

if
∞∑
i=1

(ai)
2 converges. Let H be the set of all square summable sequences. Define addition

and scalar multiplication on H coordinatewise:

(a1, a2, a3, . . . , an . . . ) + (b1, b2, b3, . . . , bn . . . ) = (a1 + b1, a2 + b2, a3 + b3, . . . , an + bn . . . )

c(a1, a2, a3, . . . , an . . . ) = (ca1, ca2, ca3, . . . , can . . . ).

(1.) Verify that H is an infinite-dimensional vector space.
You will need to show that the sum of two square-summable sequences is itself square-

summable. If you have forgotten everything you ever knew about infinite series, you can
take this for granted (for now).

To show H is a vector space, first we can note that H is a subset of the vector space
consisting of all infinite sequences of real numbers, so we need to check that H is closed
under multiplication by scalars and under addition.

For multiplication by scalars, suppose (a1, a2, a3, . . . ) ∈ H, so
∞∑
i=1

(ai)
2 converges, say

∞∑
i=1

(ai)
2 = a. Then

∞∑
i=1

(cai)
2 =

∞∑
i=1

c2(ai)
2 = c2

∞∑
i=1

(ai)
2 = c2a, and so c(a1, a2, a3, . . . ) ∈ H.

For addition, suppose (a1, a2, a3, . . . ) ∈ H and (b1, b2, b3, . . . ) ∈ H, so
∞∑
i=1

(ai)
2 = a and

∞∑
i=1

(bi)
2 = b. Then

∞∑
i=1

(ai+bi)
2 =

∞∑
i=1

((ai)
2 +2aibi+(bi)

2). We can see that either |aibi| ≤ a2
i

or |aibi ≤ b2i |, and so (ai)
2 + 2aibi + (bi)

2) ≤ 3a2
i + 3b2i . Since

∞∑
i=1

3a2
i + 3b2i converges (to

3a+ 3b), by the comparison test, so does
∞∑
i=1

((ai)
2 + 2aibi + (bi)

2).

To show H is infinite-dimensional, show there is an infinite, linearly independent set of
vectors. The the vectors en, where the ith coordinate of en is 1 if i = n and 0 if i 6= n, form
such a set.
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We define an inner product on H by

〈(a1, a2, a3, . . . , an . . . ), (b1, b2, b3, . . . , bn . . . )〉 = a1b1 + a2b2 + a3b3 + · · ·+ anbn + · · · .

(2.) Show that this is in fact an inner product. The first thing you need to show is that
this sum actually converges.

To show the sum converges, we can again use the comparison test, since |aibi| ≤ a2
i + b2i .

It is not too hard to check the four properties of an inner product.

(3.) Show that the vectors en, where the ith coordinate of en is 1 if i = n and 0 if i 6= n,
form an orthonormal set.

Compute 〈ei, ej〉 = δij.

(4.) Show that the orthonormal set {en | n ∈ N} is not a basis and cannot be extended
to an orthonormal basis.

This set does not span H, because any linear combination of the en has only finitely many
non-zero entries. Therefore

(
1
2
, 1

4
, 1

8
, . . .

)
is an example of a vector in H not in the span.

On the other hand, if a = (a1, a2, a3, . . . ) is orthogonal to every en, then for every n we
must have 0 = 〈a, en〉 = an. This can only happen if a = (0, 0, 0, . . . ). Therefore, since
only the zero vector is orthogonal to every en, there is no way to extend the set of en to an
orthonormal basis.

(5.) Convince yourself that every vector in H is the limit of a sequence of vectors in
span({e1, e2, e3, . . . , en . . . }), where the notion of limit is defined using the notion of distance
that comes from this inner product (the distance between two vectors is the norm of their
difference). When thinking about the span, remember that even though H has infinite
dimension, we can only take finite linear combinations of vectors.

Show that a = (a1, a2, a3, . . . ) is the limit of the sequence of vectors (a1, 0, 0, 0 . . . ),
(a1, a2, 0, 0 . . . ), (a1, a2, a3, 0 . . . ), . . .
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