Math 24
Spring 2012
Monday, May 21
(1.) TRUE or FALSE? (These questions always deal with finite-dimensional inner product spaces.)
(a.) Every linear operator has an adjoint.
(b.) Every linear operator on V has the form $x \mapsto\langle x, y\rangle$ for some $y \in V$.
(c.) For every linear operator T on V and every ordered basis β for V we have $\left[T^{*}\right]_{\beta}=$ $\left[T_{\beta}\right]^{*}$.
(d.) The adjoint of a linear operator is unique.
(e.) For any linear operators T and U and scalars a and b,

$$
(a T+b U)^{*}=a T^{*}+b U^{*} .
$$

(f.) For any $n \times n$ matrix A, we have $\left(L_{A}\right)^{*}=L_{A^{*}}$.
(g.) For any linear operator T we have $\left(T^{*}\right)^{*}=T$.

Answers are in the back of the textbook.
(2.) Consider the following inconsistent ${ }^{1}$ system of linear equations.

$$
\begin{gathered}
x_{1}+x_{2}-x_{3}=0 \\
2 x_{1}-x_{2}+x_{3}=3 \\
x_{1}-x_{2}+x_{3}=2
\end{gathered}
$$

(a.) Find a matrix A and a column vector b such that this system is equivalent to the matrix equation $A x=b$, where x denotes the column vector $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$.

$$
A=\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & -1 & 1 \\
1 & -1 & 1
\end{array}\right) \quad b=\left(\begin{array}{l}
0 \\
3 \\
2
\end{array}\right)
$$

(b.) Find a solution $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ to $A x=b$ for which $\|x\|$ is minimal (where || \| denotes the standard norm on \mathbb{R}^{3}).

[^0]We want to find a solution $x=A^{*} u$ in the range of $L_{A^{*}}$. That is, we want to solve $A A^{*} u=b$ for u, and then set $x=A^{*} u$.

$$
\begin{gathered}
A A^{*} u=b \\
\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & -1 & 1 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & -1 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
2
\end{array}\right) \\
\left(\begin{array}{ccc}
3 & 0 & -1 \\
0 & 6 & 4 \\
-1 & 4 & 3
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
2
\end{array}\right) \\
\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{3} t \\
-\frac{2}{3} t+\frac{1}{2} \\
t
\end{array}\right)
\end{gathered}
$$

Because we need only one solution, we can set $t=0$. (Any other value for t will give the same x; you can check this.)

$$
\begin{gathered}
\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
\frac{1}{2} \\
0
\end{array}\right) \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & -1 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
\frac{1}{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)
\end{gathered}
$$

You can check that this is a solution to the original system of equations.
(3.) Let A be the matrix of problem (2), and $T=L_{A}$.
(a.) What is $T^{*}\left(x_{1}, x_{2}, x_{3}\right)$?

$$
\begin{gathered}
A^{*} x=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & -1 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+2 x_{2}+x_{3} \\
x_{1}-x_{2}-x_{3} \\
-x_{1}+x_{2}+x_{3}
\end{array}\right) \\
T^{*}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}+x_{3}, x_{1}-x_{2}-x_{3},-x_{1}+x_{2}+x_{3}\right)
\end{gathered}
$$

(b.) Give (specific) geometric descriptions of the subspaces $N(T), R(T), N\left(T^{*}\right)$ and $R\left(T^{*}\right)$, and verify that $R\left(T^{*}\right)=(N(T))^{\perp}$ and $N\left(T^{*}\right)=(R(T))^{\perp}$.
A row-reduces to the matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right)$. Since row operations do not change the null space, the solution set to $A x=0$ is $x_{1}=0, x_{2}=x_{3}$, and a basis for $N\left(L_{A}\right)$ is $\{(0,1,1)\}$.

That is, $N(T)=N\left(L_{A}\right)$ is the line through the origin in the direction of $(0,1,1)$.
A column-reduces to the matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{3} & \frac{2}{3} & 0\end{array}\right)$. Since column operations do not change the range, a basis for the range of L_{A} is $\{(3,0,-1),(0,3,2)\}$.

That is, $R(T)=R\left(L_{A}\right)$ is the plane through the origin orthogonal to the vector $(3,0,-1) \times$ $(0,3,2)=(3,-6,9)$.
A^{*} row-reduces to the matrix $\left(\begin{array}{ccc}1 & 0 & -\frac{1}{3} \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 0\end{array}\right)$. Since row operations do not change the null space, the solution set to $A x=0$ is $x_{1}=\frac{1}{3} x_{3}, x_{2}=-\frac{2}{3} x_{3}$, and a basis for $N\left(L_{A^{*}}\right)$ is $\{(1,-2,3)\}$.

That is, $N\left(T^{*}\right)=N\left(L_{A^{*}}\right)$ is the line through the origin in the direction of $(1,-2,3)$ (or, the direction of $(3,-6,9))$.
A^{*} column-reduces to the matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0\end{array}\right)$. Since column operations do not change the range, a basis for the range of L_{*} is $\{(1,0,0),(0,1,-1)\}$.

That is, $R\left(T^{*}\right)=R\left(L_{A^{*}}\right)$ is the plane through the origin orthogonal to the vector $(1,0,0) \times(0,1,-1)=(0,1,1)$.

It is clear from the geometric descriptions that $R\left(T^{*}\right)=(N(T))^{\perp}$ and $N\left(T^{*}\right)=(R(T))^{\perp}$.
(4.) Let $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be defined by and $T(w, z)=(w+i z, w-i z)$.
(a.) What is $T^{*}(w, z)$?

Let β denote the standard (orthonormal) basis for \mathbb{C}^{2}.

$$
\begin{gathered}
{[T]_{\beta}=\left(\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right) \quad\left[T^{*}\right]_{\beta}=\left([T]_{\beta}\right)^{*}=\left(\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right)} \\
T^{*}(w, z)=(w+z,-i w+i z)
\end{gathered}
$$

(b.) Compute the subspaces $N(T), R(T), N\left(T^{*}\right)$ and $R\left(T^{*}\right)$, and verify that $R\left(T^{*}\right)=$ $(N(T))^{\perp}$ and $N\left(T^{*}\right)=(R(T))^{\perp}$.

Since these matrices are invertible, $N(T)=N\left(T^{*}\right)=\{0\}$ and $R(T)=R\left(T^{*}\right)=\mathbb{C}^{2}$.

[^0]: ${ }^{1}$ Oops - that word was left over from another problem; this system is consistent.

