Math 24
Spring 2012
Monday, May 14
Sample Solutions
(1.) TRUE or FALSE?
(a.) Any linear operator on an n-dimensional vector space that has fewer than n distinct eigenvalues is not diagonalizable.
(b.) Two distinct eigenvalues corresponding to the same eigenvalue are always linearly dependent.
(c.) If λ is an eigenvalue of a linear operator T, then each vector in E_{λ} is an eigenvalue of T.
(d.) If λ_{1} and λ_{2} are distinct eigenvalues of a linear operator T, then $E_{\lambda_{1}} \cap E_{\lambda_{2}}=\{0\}$.
(e.) Let $A \in M_{n \times n}(F)$ and $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an ordered basis for F^{n} consisting of eigenvectors of A. If Q is the $n \times n$ matrix whose $j^{\text {th }}$ column is $v_{n}(1 \leq j \leq n)$, then $Q^{-1} A Q$ is a diagonal matrix.
(f.) A linear operator T on a finite-dimensional vector space is diagonalizable if and only if the multiplicity of each eigenvalue λ equals the dimension of E_{λ}.
(g.) Every diagonalizable linear operator on a nonzero vector space has at least one eigenvalue.
(h.) You can always tell from the characteristic polynomial of A whether A is diagonalizable.
(i.) You can sometimes tell from the characteristic polynomial of A whether A is diagonalizable.
(j.) You can always tell from the characteristic polynomial of A whether A is invertible.

Answers are (mostly) in the back of the book. For (h), see the previous homework. For (i), if the characteristic polynomial does not split then A is not diagonalizable, and if the charcteristic polynomial splits and all roots have multiplicity 1 , then A is diagonalizable. For (j), A is invertible if and only if its null space is $\{0\}$, that is, if and only if 0 is not an eigenvalue of A, and from the characteristic polynomial you can tell what the eigenvalues are.
(2.) Find an invertible matrix Q and find a diagonalizable matrix B such that either $Q A Q^{-1}=B$ or $Q^{-1} A Q=B$. Be sure to say which of these two equations holds for your Q and B.

$$
A=\left(\begin{array}{ccc}
1 & -7 & 2 \\
0 & 2 & 0 \\
0 & -10 & 2
\end{array}\right)
$$

The characteristic polynomial of A is $(2-\lambda)^{2}(1-\lambda)$. Eigenvalue $\lambda=1$ has multiplicity 1 and a basis for the eigenspace is $\{(1,0,0)\}$. Eigenvalue $\lambda=2$ has multiplicity 2 and a
basis for the eigenspace is $\{(2,0,1)\}$. Since this eigenspace does not have dimension $2, A$ is in fact not diagonalizable.
(3.) For the matrix A in problem (2), find a basis for the eigenspace of A corresponding to each eigenvalue. Describe each of these eigenspaces geometrically. (Be specific. Don't just say "a line"; specify which line.)

The eigenspace E_{1} is the x-axis. The eigenspace E_{2} is the line in the $x z$-plane with equations $x=2 z, y=0$.
(4.) Test the matrix A for diagonalizability.

$$
A=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

The eigenvalues of A are $\lambda=1$, of multiplicity 2 , and $\lambda=2$, of multiplicity 1 . To test for diagonalizability, we must test whether the eigenspace for $\lambda=1$ has dimension 2 . The eigenspace E_{λ} is the null space of $A-\lambda I$, so we must check the nullity of $A-\lambda I$. By the Dimension Theorem, we can find the nullity of a matrix from its rank.

In our case $\lambda=1, A-\lambda I=A-I=\left(\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$, and we can see that this matrix has rank 2 , so it has nullity 1 . Therefore the dimension of the eigenspace is 1 and A is not diagonalizable.
(5.) Suppose a linear operator T on an n-dimensional vector space V has only one eigenvalue $\lambda=1$, and T is diagonalizable. What can you conclude about T ?

What can you say in general about diagonalizable linear operators with a single eigenvalue?

Since T is diagonalizable, V has a basis β consisting of eigenvectors for T. Since the only eigenvalue of T is $\lambda=1$, every element of β is an eigenvector for that eigenvalue, and so for $v \in \beta$, we have $T(v)=v$. Since T agrees with the identity operator I_{V} on β, and a linear transformation is determined by its action on a basis, T must be the identity operator: $T=I_{V}$, and $T(v)=v$ for every $v \in V$.

By similar reasoning, if T is diagonalizable and its only eigenvalue is c, then $T(v)=c v$ for every $v \in V$.

Notice that regardless of our choice of basis α, we have $[T]_{\alpha}=c I$.
(6.) Show that if T is a diagonalizable linear operator on an n-dimensional vector space V with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then each vector v in V can be expressed uniquely as

$$
v=v_{1}+v_{2}+\cdots+v_{k}
$$

where $v_{i} \in E_{\lambda_{i}}$.
First, we show that any such expression is unique. Suppose that

$$
v_{1}+v_{2}+\cdots+v_{k}=w_{1}+w_{2}+\cdots+w_{k}
$$

where v_{i} and w_{i} are in the eigenspace $E_{\lambda_{i}}$. We must show that $v_{i}=w_{i}$ for all i.
We have

$$
\left(v_{1}-w_{1}\right)+\left(v_{2}-w_{2}\right)+\cdots+\left(v_{k}-w_{k}\right)=0
$$

where $v_{i}-w_{i}$ is in the eigenspace $E_{\lambda_{i}}$. Because eigenvectors corresponding to distinct eigenvalues are linearly independent, the only way this can happen is if we always have $v_{i}-w_{i}=0$, or $v_{i}=w_{i}$ for all i.

Now we show that any vector in V can be expressed in this form. Because T is diagonalizable, V has a basis of eigenvectors,

$$
\beta=\left\{v_{1,1}, \ldots, v_{1, m_{1}}, v_{2,1}, \ldots, v_{2, m_{2}}, \ldots, v_{k, 1}, \ldots, v_{k, m_{k}}\right\}
$$

where $v_{i, j}$ is an eigenvector for λ_{i}. Because β is a basis, we can express any v in V as a linear combination of vectors from β,

$$
v=a_{1,1} v_{1,1}+\cdots+a_{1, m_{1}} v_{1, m_{1}}+a_{2,1} v_{2,1}+\cdots+a_{2, m_{2}} v_{2, m_{2}}+\cdots+a_{k, 1} v_{k, 1}+\cdots+a_{k, m_{k}} v_{k, m_{k}} .
$$

Grouping together vectors from the same eigenspace, we have

$$
v=v_{1}+v_{2}+\cdots+v_{k}
$$

where $v_{i}=a_{i, 1} v_{i, 1}+\cdots+a_{i, m_{i}} v_{i, m_{i}} \in E_{\lambda_{i}}$.

