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1. Show that if T and U are linear transformations from a vector space V to a vector
space W , then R(T + U) ⊆ R(T ) +R(U).

Show that if A and B are m× n matrices, then rank(A+B) ≤ rank(A) + rank(B).

Suppose v ∈ R(T + U); we must show v ∈ R(T ) + R(U). That is, we must show we
can write v as the sum of an element of R(T ) and an element of R(U).

Since v is in the range of T + U , by the definition of T + U , for some x ∈ V we have

v = (T + U)(x) = T (x) + U(x).

Since T (x) ∈ R(T ) and U(x) ∈ R(U), this is what we needed to show.

For the second part, we must show

dim(R(LA+B)) ≤ dim(R(LA)) + dim(R(LB)).

We know that LA+B = LA + LB, so we must show

dim(R(LA + LB)) ≤ dim(R(LA)) + dim(R(LB)).

By the first part, R(LA + LB) ⊆ R(LA) +R(LB), so

dim(R(LA + LB)) ≤ dim(R(LA) +R(LB)),

and we must show that

dim(R(LA) +R(LB)) ≤ dim(R(LA)) + dim(R(LB)).

Let’s show that in general dim(W1 +W2) ≤ dim(W1)+dim(W2). We know W1 +W2 =
span(W1 ∪W2), so if α is a basis for W1 and β is a basis for W2, then α ∪ β generates
W1 +W2. Therefore dim(W1 +W2) ≤ size(α) + size(β) = dim(W1) + dim(W2).
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2. Suppose that T : V → W and U : V → Z are linear transformations between finite-
dimensional vector spaces (possibly of different dimensions). When is there a linear
transformation T : W → Z such that U = TT? When is there no such linear transfor-
mation?

You may not be able to find a complete answer; if not, come up with whatever criteria
you can. (Examples: Assume U is the zero transformation. Assume U is not the zero
transformation, but T is.)

Can you deduce anything about when a matrix equation AX = B (where X is a matrix
of variables) has a solution?

First, suppose there is such a T . Then, for x ∈ N(T ), we must have

U(x) = TT (x) = T (T (x)) = T (0) = 0,

so also x ∈ N(U . Therefore, if N(T ) 6⊆ N(U), there is no such T .

Conversely, we will show that if N(T ) ⊆ N(U), then there is such a T . Let {v1, . . . , vk}
be a basis for N(T ), and extend it to a basis {v1, . . . vn} for V . We know that a linear
transformation is determined by its action on a basis, so we will have TT = U as long
as we have TT (vi) = U(vi) for i = 1, . . . , n.

For i ≤ k, we have vi ∈ N(T ) ⊆ N(U), so TT (vi) = T (T (vi)) = T (0) = 0 = U(vi),
however we define T . For k < i ≤ n, we must guarantee TT (vi) = T (T (vi)) = U(vi).

By the proof of the Dimension Theorem, {T (vk+1), . . . , T (vn)} is a basis for R(T ).
Extend it to a basis {T (vk+1), . . . , T (vn), w1, . . . , wm} for W . We can define T on a basis
for W any way we want, by a theorem in the textbook, so we can set T (T (vi)) = U(vi)
for i = k + 1, . . . , n, and T (wj) = 0.

The answer to the second question is “not really.” We already know (by looking
at the columns of AX one at at time) that AX = B has a solution if and only if
rank(A|B) = rank(A).

However, we can deduce something about when a matrix equation XA = B has a
solution. We are trying to solve LXLA = LB for LX , like trying to solve TT = U
for T , so by the first part we can do this in case N(LA) ⊆ N(LB), that is, in case
A~x = 0 =⇒ B~x = 0.

By thinking of the rows of A and B as coefficients of linear equations in the systems
corresponding to A~x = 0 and B~x = 0, we can see that the equations in B~x = 0 must
be linear combinations of the equations in Ax = 0; that is, the rows of B must be

linear combinations of the rows in A. That is, we must have rank

(
A

B

)
= rank(A).
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3. Let T : R3 → R3 be defined by

T (x, y, z) =

(
x,

(
1

4
x+

3

4
y − 1

4
z

)
,

(
1

4
x− 1

4
y +

3

4
z

))
,

α be the standard basis for R3, and β be the basis {(1, 1, 0), (0, 1, 1), (1, 0, 1)}.

(a) Find [T ]β.

(b) Find ([T ]β)n. (An is just A multiplied by itself n times.)

(c) Find matrices Q and Q−1 such that [T ]α = Q[T ]βQ
−1.

(d) Use the fact that [T ]α = Q[T ]βQ
−1 to find ([T ]α)n and T n(x, y, z). (T n is just T

composed with itself n times.)

(e) Find lim
n→∞

([T ]β)n and lim
n→∞

([T ]α)n. (The limit of a sequence of matrices is com-

puted entry-by-entry.))

(f) Find lim
n→∞

T n(x, y, z).

This problem is a preview of Chapter 5, and is also related to an important application
called Markov chains. Suppose (x, y, z) describes the state of some system at a given
time (for example, x, y, and z could be the populations of three organisms in an
ecosystem, or the net worths of three Monopoly players), and T (x, y, z) always describes
the state of the system one “step” later (for example, one fiscal year, or one turn for
each player). Then lim

n→∞
T n(x, y, z) is the limiting state of the system, the state towards

which the system will tend over time, if it starts in state (x, y, z).

T (1, 1, 0) = (1, 1, 0), T (0, 1, 1) =
(
0, 1

2
, 1

2

)
, T (1, 0, 1) = (1, 0, 1), so [T ]β =

1 0 0
0 1

2
0

0 0 1

.

([T ]β)n =

1 0 0
0 1

2n 0
0 0 1

.

Q =

1 0 1
1 1 0
0 1 1

 Q−1 =

 1
2

1
2
−1

2

−1
2

1
2

1
2

1
2
−1

2
1
2

 .

([T ]α)2 = Q[T ]βQ
−1Q[T ]βQ

−1 = Q([T ]β)2Q−1, and in general [T ]nα = Q([T ]β)nQ−1.

Multiplying it out, [T ]nα =


1 0 0

1
2
− 1

2n+1
1
2

+ 1
2n+1 −1

2
+ 1

2n+1

1
2
− 1

2n+1 −1
2

+ 1
2n+1

1
2

+ 1
2n+1


.
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T n(x, y, z) =

(
x,
x+ y − z

2
+
−x+ y + z

2n+1
,
x− y + z

2
+
−x+ y + z

2n+1

)
.

lim
n→∞

([T ]β)n =

1 0 0
0 0 0
0 0 1

 lim
n→∞

([T ]α)n =


1 0 0

1
2

1
2
−1

2

1
2
−1

2
1
2


.

lim
n→∞

T n(x, y, z) =

(
x,
x+ y − z

2
,
x− y + z

2

)
.
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