Math 24
Spring 2012
Wednesday, May 9

1. Show that if T and U are linear transformations from a vector space V to a vector space W, then $R(T+U) \subseteq R(T)+R(U)$.
Show that if A and B are $m \times n$ matrices, then $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$.

Suppose $v \in R(T+U)$; we must show $v \in R(T)+R(U)$. That is, we must show we can write v as the sum of an element of $R(T)$ and an element of $R(U)$.
Since v is in the range of $T+U$, by the definition of $T+U$, for some $x \in V$ we have

$$
v=(T+U)(x)=T(x)+U(x)
$$

Since $T(x) \in R(T)$ and $U(x) \in R(U)$, this is what we needed to show.

For the second part, we must show

$$
\operatorname{dim}\left(R\left(L_{A+B}\right)\right) \leq \operatorname{dim}\left(R\left(L_{A}\right)\right)+\operatorname{dim}\left(R\left(L_{B}\right)\right)
$$

We know that $L_{A+B}=L_{A}+L_{B}$, so we must show

$$
\operatorname{dim}\left(R\left(L_{A}+L_{B}\right)\right) \leq \operatorname{dim}\left(R\left(L_{A}\right)\right)+\operatorname{dim}\left(R\left(L_{B}\right)\right)
$$

By the first part, $R\left(L_{A}+L_{B}\right) \subseteq R\left(L_{A}\right)+R\left(L_{B}\right)$, so

$$
\operatorname{dim}\left(R\left(L_{A}+L_{B}\right)\right) \leq \operatorname{dim}\left(R\left(L_{A}\right)+R\left(L_{B}\right)\right)
$$

and we must show that

$$
\operatorname{dim}\left(R\left(L_{A}\right)+R\left(L_{B}\right)\right) \leq \operatorname{dim}\left(R\left(L_{A}\right)\right)+\operatorname{dim}\left(R\left(L_{B}\right)\right)
$$

Let's show that in general $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq \operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$. We know $W_{1}+W_{2}=$ $\operatorname{span}\left(W_{1} \cup W_{2}\right)$, so if α is a basis for W_{1} and β is a basis for W_{2}, then $\alpha \cup \beta$ generates $W_{1}+W_{2}$. Therefore $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq \operatorname{size}(\alpha)+\operatorname{size}(\beta)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$.
2. Suppose that $T: V \rightarrow W$ and $U: V \rightarrow Z$ are linear transformations between finitedimensional vector spaces (possibly of different dimensions). When is there a linear transformation $\bar{T}: W \rightarrow Z$ such that $U=\bar{T} T$? When is there no such linear transformation?

You may not be able to find a complete answer; if not, come up with whatever criteria you can. (Examples: Assume U is the zero transformation. Assume U is not the zero transformation, but T is.)
Can you deduce anything about when a matrix equation $A X=B$ (where X is a matrix of variables) has a solution?

First, suppose there is such a \bar{T}. Then, for $x \in N(T)$, we must have

$$
U(x)=\bar{T} T(x)=\bar{T}(T(x))=\bar{T}(0)=0
$$

so also $x \in N(U$. Therefore, if $N(T) \nsubseteq N(U)$, there is no such \bar{T}.
Conversely, we will show that if $N(T) \subseteq N(U)$, then there is such a \bar{T}. Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for $N(T)$, and extend it to a basis $\left\{v_{1}, \ldots v_{n}\right\}$ for V. We know that a linear transformation is determined by its action on a basis, so we will have $\bar{T} T=U$ as long as we have $\bar{T} T\left(v_{i}\right)=U\left(v_{i}\right)$ for $i=1, \ldots, n$.
For $i \leq k$, we have $v_{i} \in N(T) \subseteq N(U)$, so $\bar{T} T\left(v_{i}\right)=\bar{T}\left(T\left(v_{i}\right)\right)=\bar{T}(0)=0=U\left(v_{i}\right)$, however we define \bar{T}. For $k<i \leq n$, we must guarantee $\bar{T} T\left(v_{i}\right)=\bar{T}\left(T\left(v_{i}\right)\right)=U\left(v_{i}\right)$.
By the proof of the Dimension Theorem, $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for $R(T)$. Extend it to a basis $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right), w_{1}, \ldots, w_{m}\right\}$ for W. We can define \bar{T} on a basis for W any way we want, by a theorem in the textbook, so we can set $\bar{T}\left(T\left(v_{i}\right)\right)=U\left(v_{i}\right)$ for $i=k+1, \ldots, n$, and $\bar{T}\left(w_{j}\right)=0$.

The answer to the second question is "not really." We already know (by looking at the columns of $A X$ one at at time) that $A X=B$ has a solution if and only if $\operatorname{rank}(A \mid B)=\operatorname{rank}(A)$.

However, we can deduce something about when a matrix equation $X A=B$ has a solution. We are trying to solve $L_{X} L_{A}=L_{B}$ for L_{X}, like trying to solve $\bar{T} T=U$ for \bar{T}, so by the first part we can do this in case $N\left(L_{A}\right) \subseteq N\left(L_{B}\right)$, that is, in case $A \vec{x}=0 \Longrightarrow B \vec{x}=0$.

By thinking of the rows of A and B as coefficients of linear equations in the systems corresponding to $A \vec{x}=0$ and $B \vec{x}=0$, we can see that the equations in $B \vec{x}=0$ must be linear combinations of the equations in $A x=0$; that is, the rows of B must be linear combinations of the rows in A. That is, we must have $\operatorname{rank}\left(\frac{A}{B}\right)=\operatorname{rank}(A)$.
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by

$$
T(x, y, z)=\left(x,\left(\frac{1}{4} x+\frac{3}{4} y-\frac{1}{4} z\right),\left(\frac{1}{4} x-\frac{1}{4} y+\frac{3}{4} z\right)\right)
$$

α be the standard basis for \mathbb{R}^{3}, and β be the basis $\{(1,1,0),(0,1,1),(1,0,1)\}$.
(a) Find $[T]_{\beta}$.
(b) Find $\left([T]_{\beta}\right)^{n}$. (A^{n} is just A multiplied by itself n times.)
(c) Find matrices Q and Q^{-1} such that $[T]_{\alpha}=Q[T]_{\beta} Q^{-1}$.
(d) Use the fact that $[T]_{\alpha}=Q[T]_{\beta} Q^{-1}$ to find $\left([T]_{\alpha}\right)^{n}$ and $T^{n}(x, y, z)$. (T^{n} is just T composed with itself n times.)
(e) Find $\lim _{n \rightarrow \infty}\left([T]_{\beta}\right)^{n}$ and $\lim _{n \rightarrow \infty}\left([T]_{\alpha}\right)^{n}$. (The limit of a sequence of matrices is computed entry-by-entry.))
(f) Find $\lim _{n \rightarrow \infty} T^{n}(x, y, z)$.

This problem is a preview of Chapter 5, and is also related to an important application called Markov chains. Suppose (x, y, z) describes the state of some system at a given time (for example, x, y, and z could be the populations of three organisms in an ecosystem, or the net worths of three Monopoly players), and $T(x, y, z)$ always describes the state of the system one "step" later (for example, one fiscal year, or one turn for each player). Then $\lim _{n \rightarrow \infty} T^{n}(x, y, z)$ is the limiting state of the system, the state towards which the system will tend over time, if it starts in state (x, y, z).
$T(1,1,0)=(1,1,0), T(0,1,1)=\left(0, \frac{1}{2}, \frac{1}{2}\right), T(1,0,1)=(1,0,1)$, so $[T]_{\beta}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right)$.
$\left([T]_{\beta}\right)^{n}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2^{n}} & 0 \\ 0 & 0 & 1\end{array}\right)$.
$Q=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right) \quad Q^{-1}=\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\end{array}\right)$.
$\left([T]_{\alpha}\right)^{2}=Q[T]_{\beta} Q^{-1} Q[T]_{\beta} Q^{-1}=Q\left([T]_{\beta}\right)^{2} Q^{-1}$, and in general $[T]_{\alpha}^{n}=Q\left([T]_{\beta}\right)^{n} Q^{-1}$.
Multiplying it out, $[T]_{\alpha}^{n}=\left(\begin{array}{ccc}1 & 0 & 0 \\ \frac{1}{2}-\frac{1}{2^{n+1}} & \frac{1}{2}+\frac{1}{2^{n+1}} & -\frac{1}{2}+\frac{1}{2^{n+1}} \\ \frac{1}{2}-\frac{1}{2^{n+1}} & -\frac{1}{2}+\frac{1}{2^{n+1}} & \frac{1}{2}+\frac{1}{2^{n+1}}\end{array}\right)$.
$T^{n}(x, y, z)=\left(x, \frac{x+y-z}{2}+\frac{-x+y+z}{2^{n+1}}, \frac{x-y+z}{2}+\frac{-x+y+z}{2^{n+1}}\right)$.
$\lim _{n \rightarrow \infty}\left([T]_{\beta}\right)^{n}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \quad \lim _{n \rightarrow \infty}\left([T]_{\alpha}\right)^{n}=\left(\begin{array}{ccc}1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\end{array}\right)$.
$\lim _{n \rightarrow \infty} T^{n}(x, y, z)=\left(x, \frac{x+y-z}{2}, \frac{x-y+z}{2}\right)$.

