Math 24
Spring 2012
Monday, May 7
(1.) TRUE or FALSE?
(a.) If E is an elementary matrix, then $\operatorname{det}(E)= \pm 1$. (F)
(b.) For any $A, B \in M_{n \times n}(F)$, $\operatorname{det}(A B)=(\operatorname{det}(A))(\operatorname{det}(B))$. (T)
(c.) A matrix $A \in M_{n \times n}(F)$ is invertible if and only if $\operatorname{det}(A)=0$. (F)
(d.) A matrix $A \in M_{n \times n}(F)$ has rank n if and only if $\operatorname{det}(A) \neq 0$. (T)
(e.) For any $A \in M_{n \times n}(F)$, $\operatorname{det}\left(A^{t}\right)=-\operatorname{det}(A)$. (F)
(f.) The determinant of a square matrix can be evaluated by cofactor expansion along any column. (T)
(g.) Every system of n linear equations in n unknowns can be solved by Cramer's rule. (F)
(h.) Let $A x=b$ be the matrix form of a system of n linear equations in n unknowns, where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$. If $\operatorname{det}(A) \neq 0$ and if M_{k} is the $n \times n$ matrix obtained from A by replacing row k of A by b^{t}, then the unique solution of $A x=b$ is

$$
x_{k}=\frac{\operatorname{det}\left(M_{k}\right)}{\operatorname{det}(A)} \text { for } k=1,2, \ldots, n .
$$

(F)
(i.) If Q is an invertible matrix, then $\operatorname{det}\left(Q^{-1}\right)=\frac{1}{\operatorname{det}(Q)}$. (T$)$
(j.) The determinant of a lower triangular $n \times n$ matrix is the product of its diagonal entries. (A matrix is lower triangular if the only nonzero entries are on or below the main diagonal.)
(2.) Show that if A and B are similar $n \times n$ matrices, then $\operatorname{det}(A)=\operatorname{det}(B)$.

If $A=Q B Q^{-1}$ then $\operatorname{det}(A)=\operatorname{det}(Q) \operatorname{det}(B) \operatorname{det}\left(Q^{-1}\right)=\operatorname{det}(Q) \operatorname{det}(B) \frac{1}{\operatorname{det}(Q)}=\operatorname{det}(B)$.
(3.) Suppose that $M \in M_{n \times n}(F)$ can be written in the form

$$
M=\left(\begin{array}{cc}
A & B \\
0 & I
\end{array}\right),
$$

where A is a square matrix, 0 is a zero matrix, and I is an $m \times m$ identity matrix. Prove that $\operatorname{det}(M)=\operatorname{det}(A)$.

One way to prove this is to use type 3 elementary row operations on the first $n-m$ rows of M, to put A (and therefore M) into upper triangular form, as

$$
M^{*}=\left(\begin{array}{cc}
A^{*} & B^{*} \\
0 & I
\end{array}\right)
$$

Then the diagonal entries of M^{*} are the diagonal entries of A^{*} and a bunch of 1 's from I, and since their determinants are the product of their diagonal entries $\left.\left.\operatorname{det}\left(M^{*}\right)=\operatorname{det}\right) A^{*}\right)$. But type 3 elementary row operations don't change the determinant, and so $\operatorname{det}(M)=$ $\operatorname{det}\left(M^{*}\right)=\operatorname{det}\left(A^{*}\right)=\operatorname{det}(A)$.

Another way to prove this is by induction on m. The base case is $m=0$, in which case $M=A$, so $\operatorname{det}(M)=\operatorname{det}(A)$.

For the inductive step, assume this is true when $I=I_{m}$ and show it is true when $I=I_{m+1}$. In this case, displaying the last row and column of M, we have

$$
M=\left(\begin{array}{cc}
A & B \\
0 & I_{m+1}
\end{array}\right)=\left(\begin{array}{ccc}
A & B^{*} & b^{*} \\
0 & I_{m} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and we can expand along the last row and use the inductive hypothesis to get

$$
\operatorname{det}(B)=(1) \operatorname{det}\left(\begin{array}{cc}
A & B^{*} \\
0 & I_{m}
\end{array}\right)=\operatorname{det}(A)
$$

(4.) Let $A \in M_{n \times n}(F)$ be nonzero. For any m with $1 \leq m \leq n$, an $m \times m$ submatrix is obtained by deleting $n-m$ rows and $n-m$ columns of A. For example, if we start with $A=\left(\begin{array}{cccc}1 & 1 & 1 & 4 \\ 2 & 3 & 1 & 8 \\ -2 & 0 & 0 & -4 \\ 1 & 4 & 4 & 10\end{array}\right)$ and delete rows 2 and 3 and columns 2 and 4 , we get the 2×2 submatrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 4\end{array}\right)$.
(a.) Show that if A is an $n \times n$ matrix and there is a $k \times k$ submatrix of A with nonzero determinant, then $\operatorname{rank}(A) \geq k$.

Since elementary row and column operations do not change the rank of a matrix, we can interchange rows and columns so the submatrix B with nonzero determinant sits in the upper left corner of A :

$$
A=\left(\begin{array}{ll}
B & C \\
D & E
\end{array}\right)
$$

Since the first k-many columns of B are linearly independent, the first k-many columns of A must also be linearly independent. Therefore $\operatorname{rank}(A) \geq k$.
(b.) Show that if A is an $n \times n$ matrix with rank k, then there is a $k \times k$ submatrix of A with nonzero determinant.

Since A has rank k, we can choose k linearly independent columns of A. Delete the rest to get an $n \times k$ matrix C of rank k.

Since C has rank k, we can choose k linearly independent rows of C. Delete the rest to get a $k \times k$ matrix B of rank k. Now B is a $k \times k$ submatrix of A, and since $\operatorname{rank}(B)=k$, we know $\operatorname{det}(B) \neq 0$.

