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(1.) TRUE or FALSE?

(a.) If E is an elementary matrix, then det(E) = ±1. (F)
(b.) For any A, B ∈Mn×n(F ), det(AB) = (det(A))(det(B)). (T)
(c.) A matrix A ∈Mn×n(F ) is invertible if and only if det(A) = 0. (F)
(d.) A matrix A ∈Mn×n(F ) has rank n if and only if det(A) 6= 0. (T)
(e.) For any A ∈Mn×n(F ), det(At) = −det(A). (F)
(f.) The determinant of a square matrix can be evaluated by cofactor expansion along

any column. (T)
(g.) Every system of n linear equations in n unknowns can be solved by Cramer’s rule.

(F)
(h.) Let Ax = b be the matrix form of a system of n linear equations in n unknowns,

where x = (x1, x2, . . . , xn)t. If det(A) 6= 0 and if Mk is the n× n matrix obtained from A by
replacing row k of A by bt, then the unique solution of Ax = b is

xk =
det(Mk)

det(A)
for k = 1, 2, . . . , n.

(F)

(i.) If Q is an invertible matrix, then det(Q−1) =
1

det(Q)
. (T)

(j.) The determinant of a lower triangular n × n matrix is the product of its diagonal
entries. (A matrix is lower triangular if the only nonzero entries are on or below the main
diagonal.)

(T)

(2.) Show that if A and B are similar n× n matrices, then det(A) = det(B).

If A = QBQ−1 then det(A) = det(Q)det(B)det(Q−1) = det(Q)det(B)
1

det(Q)
= det(B).

(3.) Suppose that M ∈Mn×n(F ) can be written in the form

M =

(
A B
0 I

)
,

where A is a square matrix, 0 is a zero matrix, and I is an m ×m identity matrix. Prove
that det(M) = det(A).

One way to prove this is to use type 3 elementary row operations on the first n−m rows
of M , to put A (and therefore M) into upper triangular form, as

M∗ =

(
A∗ B∗

0 I

)
.
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Then the diagonal entries of M∗ are the diagonal entries of A∗ and a bunch of 1’s from
I, and since their determinants are the product of their diagonal entries det(M∗) = det)A∗).
But type 3 elementary row operations don’t change the determinant, and so det(M) =
det(M∗) = det(A∗) = det(A).

Another way to prove this is by induction on m. The base case is m = 0, in which case
M = A, so det(M) = det(A).

For the inductive step, assume this is true when I = Im and show it is true when I = Im+1.
In this case, displaying the last row and column of M , we have

M =

(
A B
0 Im+1

)
=

A B∗ b∗

0 Im 0
0 0 1


and we can expand along the last row and use the inductive hypothesis to get

det(B) = (1)det

(
A B∗

0 Im

)
= det(A).

(4.) Let A ∈ Mn×n(F ) be nonzero. For any m with 1 ≤ m ≤ n, an m ×m submatrix
is obtained by deleting n−m rows and n−m columns of A. For example, if we start with

A =


1 1 1 4
2 3 1 8
−2 0 0 −4
1 4 4 10

 and delete rows 2 and 3 and columns 2 and 4, we get the 2 × 2

submatrix

(
1 1
1 4

)
.

(a.) Show that if A is an n× n matrix and there is a k× k submatrix of A with nonzero
determinant, then rank(A) ≥ k.

Since elementary row and column operations do not change the rank of a matrix, we
can interchange rows and columns so the submatrix B with nonzero determinant sits in the
upper left corner of A:

A =

(
B C
D E

)
.

Since the first k-many columns of B are linearly independent, the first k-many columns of
A must also be linearly independent. Therefore rank(A) ≥ k.

(b.) Show that if A is an n × n matrix with rank k, then there is a k × k submatrix of
A with nonzero determinant.

Since A has rank k, we can choose k linearly independent columns of A. Delete the rest
to get an n× k matrix C of rank k.

Since C has rank k, we can choose k linearly independent rows of C. Delete the rest to
get a k × k matrix B of rank k. Now B is a k × k submatrix of A, and since rank(B) = k,
we know det(B) 6= 0.
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