Math 24
Spring 2012
Friday, May 4
(1.) TRUE or FALSE?
(a.) The function det : $M_{n \times n}(F) \rightarrow F$ is a linear transformation. (F)
(b.) The determinant of a $n \times n$ matrix is a linear function of each row of the matrix when the other rows are held fixed. (T)
(c.) If $A \in M_{n \times n}(F)$ and $\operatorname{det}(A)=0$ then A is invertible. (F)
(d.) If u and v are vectors in \mathbb{R}^{2} emanating from the origin, then the area of the parallelogram having u and v as adjacent sides is $\operatorname{det}\binom{u}{v}$. (F)
(e.) A coordinate system is right-handed if and only if its orientation equals 1. (T)
(f.) The determinant of a square matrix can be evaluated by cofactor expansion along any row. (T)
(g.) If two rows of a square matrix A are identical, then $\operatorname{det}(A)=0$. (T)
(h.) If B is a matrix obtained from a square matrix A by multiplying a row of A by a scalar, then $\operatorname{det}(B)=\operatorname{det}(A)$. (F)
(i.) If B is a matrix obtained from a square matrix A by interchanging any two rows, then $\operatorname{det}(B)=-\operatorname{det}(A)$. (T)
(j.) If B is a matrix obtained from a square matrix A by adding k times row i to row j, then $\operatorname{det}(B)=k \operatorname{det}(A)$. (F)
(k.) If $A \in M_{n \times n}(F)$ has rank n then $\operatorname{det}(A)=0$. (F)
(l.) The determinant of an upper triangular matrix equals the product of its diagonal entries. (T)
(2.) Evaluate the determinant of the following matrix in $M_{3 \times 3}(\mathbb{C})$, first by cofactor expansion along any row, second by using elementary row operations to transform it to an upper triangular matrix.

$$
\left(\begin{array}{ccc}
0 & 1 & 3 \\
-i & 0 & -3 \\
2 & 3 i & 0
\end{array}\right)
$$

Using cofactor expansion along the second row, we get

$$
-(-i)\left|\begin{array}{cc}
1 & 3 \\
3 i & 0
\end{array}\right|+(0)\left|\begin{array}{ll}
0 & 3 \\
2 & 0
\end{array}\right|-(-3)\left|\begin{array}{cc}
0 & 1 \\
2 & 3 i
\end{array}\right|=i(-9 i)+3(-2)=3
$$

Using elementary row operations of type 3 , which do not change the determinant, we transform the matrix in the following steps:

$$
\left(\begin{array}{ccc}
0 & 1 & 3 \\
-i & 0 & -3 \\
2 & 3 i & 0
\end{array}\right)\left(\begin{array}{ccc}
-i & 1 & 0 \\
-i & 0 & -3 \\
2 & 3 i & 0
\end{array}\right)\left(\begin{array}{ccc}
-i & 1 & 0 \\
0 & -1 & -3 \\
2 & 3 i & 0
\end{array}\right)\left(\begin{array}{ccc}
-i & 1 & 0 \\
0 & -1 & -3 \\
0 & i & 0
\end{array}\right)\left(\begin{array}{ccc}
-i & 1 & 0 \\
0 & -1 & -3 \\
0 & 0 & -3 i
\end{array}\right)
$$

(Add $R 2$ to $R 1$; add $(-1) R 1$ from $R 2$; add $(-2 i) R 1$ to $R 3$; add $(i) R 2$ to $R 3$.)
The determinant of the resulting matrix is the product of its diagonal entries, $-3 i^{2}=3$.
For the remaining problems, let $G: M_{n \times n}(F) \rightarrow F$ be any function such that
(a.) G is a linear function of any row, when the other rows are held fixed.
(b.) If two rows of a matrix A are identical, then $G(A)=0$.
(c.) $G\left(I_{n}\right)=1$.

Show the following:
First, let's introduce some notation. If we write out a matrix A in terms of its rows, $A=\left(\begin{array}{c}\vec{r}_{1} \\ \vdots \\ \vec{r}_{i-1} \\ \vec{r}_{i} \\ \vec{r}_{i+1} \\ \vdots \\ \vec{r}_{n}\end{array}\right)$, we can define a linear function by $T_{A, i}(\vec{x})=G\left(\begin{array}{c}\vec{r}_{1} \\ \vdots \\ \vec{r}_{i-1} \\ \vec{x} \\ \vec{r}_{i+1} \\ \vdots \\ \vec{r}_{n}\end{array}\right)$. This is in fact a linear
function of \vec{x} by condition (a). Notice that $T_{A, i}\left(\vec{r}_{i}\right)=G(A)$. Also notice that if $j \neq i$, then by condition (b), $T_{A, j}\left(\vec{r}_{i}\right)=0$.
(3.) If B is obtained from A by multiplying row i by the scalar r, then $G(B)=r G(A)$. (Hint: Use the fact that G is a linear function of row i when the other rows are held fixed.)

$$
\text { If } A=\left(\begin{array}{c}
\vec{r}_{1} \\
\vdots \\
\vec{r}_{i-1} \\
\vec{r}_{i} \\
\vec{r}_{i+1} \\
\vdots \\
\vec{r}_{n}
\end{array}\right) \text {, then } B=\left(\begin{array}{c}
\vec{r}_{1} \\
\vdots \\
\vec{r}_{i-1} \\
r\left(\vec{r}_{i}\right) \\
\vec{r}_{i+1} \\
\vdots \\
\vec{r}_{n}
\end{array}\right) \text {, and } G(B)=T_{A, i}\left(r\left(\vec{r}_{i}\right)\right)=r T_{A, i}\left(\vec{r}_{i}\right)=r G(A) \text {, by the }
$$

linearity of $T_{A, i}$.
(4.) If row i of A consists entirely of zeroes, then $G(A)=0$.

If $\vec{r}_{i}=\overrightarrow{0}$, then $G(A)=T_{A, i}\left(\vec{r}_{i}\right)=T_{A, i}(\overrightarrow{0})=0$, by the linearity of $T_{A, i}$.
(5.) If B is obtained from A by adding a scalar multiple of row i to row j, then $G(B)=$ $G(A)$. (Hint: Use the fact that G is a linear function of row j when the other rows are held fixed.)

$$
\begin{aligned}
& \text { If } A=\left(\begin{array}{c}
\vec{r}_{1} \\
\vdots \\
\vec{r}_{i} \\
\vdots \\
\vec{r}_{j-1} \\
\vec{r}_{j} \\
\vec{r}_{j+1} \\
\vdots \\
\vec{r}_{n}
\end{array}\right) \text { and } B=\left(\begin{array}{c}
\vec{r}_{1} \\
\vdots \\
\vec{r}_{i} \\
\vdots \\
\vec{r}_{j-1} \\
\vec{r}_{j}+r\left(\vec{r}_{i}\right) \\
\vec{r}_{j+1} \\
\vdots \\
\vec{r}_{n}
\end{array}\right) \text {, then } \\
& G(B)=T_{A, j}\left(\vec{r}_{j}+r\left(\vec{r}_{i}\right)\right)=T_{A, j}\left(\vec{r}_{j}\right)+r T_{A, . j}\left(\vec{r}_{i}\right)=G(A)+0=G(A) .
\end{aligned}
$$

(6.) If B is obtained from A by interchanging row i and row j, then $\operatorname{det}(B)=-\operatorname{det}(A)$. (Hint: This type 1 elementary row operation can be accomplished by a combination of type 2 and type 3 operations.)

$$
\binom{\vec{r}_{i}}{\vec{r}_{j}}\binom{\vec{r}_{i}+\vec{r}_{j}}{\vec{r}_{j}}\binom{\vec{r}_{i}+\vec{r}_{j}}{-\vec{r}_{i}}\binom{\vec{r}_{j}}{-\vec{r}_{i}}\binom{\vec{r}_{j}}{\vec{r}_{i}}
$$

This sequence shows that rows i and j can be interchanged by adding row j to row i; subtracting row i from row j; adding row j to row i; multiplying row j by -1 . By the previous problems, the net result is to multiply the value of G by -1 .
(7.) $G(A)=\operatorname{det}(A)$ for any $n \times n$ matrix A. (Hint: A can be transformed by elementary row operations to either I_{n} or a matrix with a row of zeroes.)

Since elementary row operations are invertible, A can be obtained from B via elementary row operations, where either $B=I_{n}$ or B has a row of zeroes. By condition (c) and problem (4), $G(B)=\operatorname{det}(B)$. By problems (3), (5), and (6), elementary row operations affect the value of G and the value of the determinant in the same way. Therefore $G(A)=\operatorname{det}(A)$.

