Math 24
Spring 2012
Thursday, April 19

(1.) TRUE or FALSE?

(a.) Suppose that $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\beta^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β^{\prime}-coordinates into β-coordinates. Then the $j^{\text {th }}$ column of Q is $\left[x_{j}\right]_{\beta^{\prime}} .\left(\mathrm{F}\right.$, it's $\left.\left[x_{j}^{\prime}\right]_{\beta}\right)$
(b.) Every change of coordinate matrix is invertible. (T)
(c.) Let T be a linear operator on a finite-dimensional vector space V, let β and β^{\prime} be ordered bases for V, and let Q be the change-of-coordinate matrix that changes β^{\prime} coordinates into β-coordinates. Then

$$
[T]_{\beta}=Q[T]_{\beta^{\prime}} Q^{-1}
$$

(T)
(d.) The matrices $A, B \in M_{n \times n}(F)$ are called similar if $B=Q^{t} A Q$ for some $Q \in$ $M_{n \times n}(F)$. (F, it's $\left.Q^{-1} A Q\right)$
(e.) Let T be a linear operator on a finite-dimensional vector space V. Then for any ordered bases β and γ for $V,[T]_{\beta}$ is similar to $[T]_{\gamma}$. (T)
(f.) Every invertible matrix is a change of coordinate matrix. (T)
(2.) Let $\alpha=\{(1,0),(0,1)\}$ and $\beta=\{(1,1),(1,-1)\}$ be ordered bases for \mathbb{R}^{2}.
(a.) Find the matrix A that changes β-coordinates into α-coordinates.
$\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
Notice that the columns are α-coordinates of the basis vectors in β, that is, the standard coordinates of $(1,1)$ and $(1,-1)$.
(b.) Find the matrix B that changes α-coordinates into β-coordinates.

$$
\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

(c.) Verify by matrix multiplication that $A B=I$.

Yes, it does.
(d.) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T(1,1)=(2,2)$ and $T(1,-1)=$ $(-1,1)$. Find the matrix $[T]_{\beta}$.

$$
\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right)
$$

This is because $T(1,1)=2(1,1)+0(1,-1)$ and $T(1,-1)=0(1,1)-1(1,-1)$.
(e.) Compute $[T]_{\alpha}$ as a produce of matrices you have already found.

If Q changes β coordinates to α coordinates, then Q is the matrix in (a), Q^{-1} is the matrix in (b), and

$$
[T]_{\alpha}=Q[T]_{\beta} Q^{-1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right)
$$

(f.) Find $T(2,3)$.

$$
\begin{aligned}
& \left(\begin{array}{ll}
\frac{1}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right)\binom{2}{3}=\binom{\frac{11}{2}}{\frac{9}{2}} \\
& T(2,3)=\left(\frac{11}{2}, \frac{9}{2}\right) .
\end{aligned}
$$

(3.) For each linear transformation T, determine whether T is invertible and justify your answer.
(a.) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(a, b)=(a-2 b, b, 3 a+4 b)$.
(b.) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(a, b)=(3 a-2, b, 4 a)$.
(c.) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(a, b, c)=(3 a-2 c, b, 3 a+4 b)$.
(d.) $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T(p(x))=p^{\prime}(x)$.
(e.) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a+2 b x+(c+d) x^{2}$.
(f.) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+b & a \\ c & c+d\end{array}\right)$.

Because an invertible linear transformation on an n-dimensional domain must have an n-dimensional codomain, we can see immediately that in (a), (b), and (d), T is not invertible.

If the dimensions of the domain and codomain are both n, to show T is invertible it is enough to show either that T is one-to-one or that T is onto.

In (e), T is not onto, because x^{3} is not in its range, so T is not invertible.
In (c) and (f), T is one-to-one, so T is invertible; it is not hard to see in each case that the null space of T is $\{0\}$.
(4.) Let V be the subspace of $M_{2 \times 2}(F)$ spanned by $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Construct an isomorphism from V to F^{3}.

It is not hard to see this set is linearly independent, since none of these matrices is a linear combination of those listed earlier. They span all matrices of the form $\left(\begin{array}{cc}a & a+b \\ 0 & c\end{array}\right)$, which can also be phrased as all matrices of the form $\left(\begin{array}{ll}a & d \\ 0 & c\end{array}\right)$. This suggests two natural isomorphisms, $T\left(\begin{array}{cc}a & a+b \\ 0 & c\end{array}\right)=(a, b, c)$ and $T\left(\begin{array}{ll}a & d \\ 0 & c\end{array}\right)=(a, d, c)$. In each case it is easy to see that the range is all of F^{3}, and so T is an isomorphism.

There are three very important isomorphisms we have seen so far. We also know a few important facts about creating isomorphisms.
(a.) If V is any vector space, the identity transformation $I_{V}: V \rightarrow V$ is an isomorphism.
(b) If V is any n-dimensional vector space over F, and β is a basis for V, the "coordinate coding" function $\phi_{\beta}: V \rightarrow F^{n}$ defined by $\phi_{\beta}(v)=[v]_{\beta}$ is an isomorphism.
(c.) If V and W are n - and m - dimensional vector spaces over F with ordered bases α and β respectively, the "representation by matrix" function $\mathcal{R}: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)$ defined by $\mathcal{R}(T)=[T]_{\alpha}^{\beta}$ is an isomorphism.
(d.) If V and W are n-dimensional vector spaces over $F, \alpha=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V, and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is a basis for W, then there is a unique isomorphism $T: V \rightarrow W$ such that $T\left(v_{1}\right)=w_{1}, T\left(v_{2}\right)=w_{2}, \ldots T\left(v_{n}\right)=w_{n}$.
(e.) If $T: V \rightarrow W$ and $U: W \rightarrow Z$ are isomorphisms, the composite (or composition) $U T: V \rightarrow Z$ is also an isomorphism.
(f.) If $T: V \rightarrow W$ is an isomorphism, then T is invertible, and its inverse $T^{-1}: W \rightarrow V$ is also an isomorphism.

Make sure you understand these things. They will be useful.

