Dartmouth College

Mathematics 23 - Assignment 25
Note. This assignment will not be collected. However, it covers Section 10.7, which you are responsible for on the exam.

1. Boyce and DiPrima Section 10.7: 4 (a). (You are encouraged to do (b)-(e) if you have an appropriate software package that you are comfortable with.)
2. Boyce and DiPrima Section 10.7: 8(a). Again (b-e) optional.
3. Use separation of variables to find the solution $u(x, t)$ for $x \in[0,1]$ and $t>0$ of the following problem:

$$
u_{x x}+t u_{t}=0, \quad u(0, t)=0, \quad u(1, t)=0, \quad u(x, 1)=1-x .
$$

4. (Travelling waves.) Consider the wave equation $u_{t t}=a^{2} u_{x x}$ on the entire real line. Show by direct computation that if $f(x)$ is any twice-differentiable function on \mathbb{R}, then the functions $v(x, t)=f(x-a t)$ and $w(x, t)=f(x+a t)$ both satisfy the wave equation. (This is discussed in the text, but check directly.) Thus $u(x, t)=f(x-a t)+f(x+a t)$ is also a solution. (One can also consider functions f that are just piecewise smooth.)
5. Boyce and DiPrima 10.7: 16(c,d).

Remark. Travelling waves and stationary, or standing, waves. When we solved the wave equation on an interval $[0, L]$ in class, we expressed the solution as an infinite sum, e.g, in the case of zero initial velocity, we obtained

$$
u(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi a t}{L}\right)
$$

Each term is called a stationary or standing wave of frequency $\frac{n \pi a}{L}$. This looks quite different from the traveling wave solutions in the previous two problems. However, (as discussed in the text), this solution $u(x, t)$ can also be expressed as

$$
u(x, t)=\frac{1}{2}(h(x-a t)+h(x+a t)
$$

where h is the odd periodic extension of period 2π of the initial function $u(x, 0)=f(x)$.

