Math 23, Spring 2007 Lecture 9

Scott Pauls 1

¹Department of Mathematics Dartmouth College

4/16/07

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

Outline

Last class

Today's material

Complex roots Repeated Roots Repeated Roots Repeated Roots Reduction of order

Group work

Next class

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

Vext class

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Material from last class

- Wronskian: linear independence
- Constant coeffecient equations: complex roots

$$ay'' + by' + cy = 0$$

where $b^2 - 4ac < 0$

Fundamental set of solutions:

$$y_1(t) = e^{\alpha t} \cos(\beta t) \ y_2(t) = e^{\alpha t} \sin(\beta t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

where
$$\alpha = -\frac{b}{2a}, \beta = \frac{\sqrt{4ac-b^2}}{2a}$$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order Group work

Given a fundamental set of solutions

$$y_1(t) = e^{\alpha t} \cos(\beta t) y_2(t) = e^{\alpha t} \sin(\beta t)$$

We make the following observations:

- Solutions of this form are oscillatory
- β small: long periods
- β large: short periods
- $\alpha > 0$: solutions tend to ∞
- $\alpha < 0$: solutions tend to 0
- $\alpha = 0$: solutions are periodic

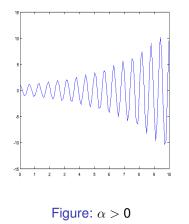
Math 23, Spring 2007 Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order Group work

Next class

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●



・ロト ・四ト ・ヨト ・ヨト ・ヨ

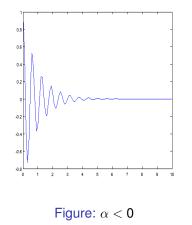
Math 23, Spring 2007

Scott Pauls

Last class

Today's materia Complex roots Complex roots Reduction of order

Group work



Math 23, Spring 2007

Scott Pauls

Last class

Today's materia Complex roots Complex roots Reduction of order

Group work

Next class

・ロト・日本・日本・日本・日本

Repeated roots

The last case left for constant coefficient linear homogeneous ODE is the case where we have a double root of the characteristic equation (i.e. $b^2 - 4ac = 0$). In this case, our method produces a single solution

$$y_1(t) = e^{\frac{-b}{2a}t}$$

The theory we have studied requires us to have two linearly independent solutions. How can we find a second solution?

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

Repeated roots

The last case left for constant coefficient linear homogeneous ODE is the case where we have a double root of the characteristic equation (i.e. $b^2 - 4ac = 0$). In this case, our method produces a single solution

$$y_1(t) = e^{\frac{-b}{2a}t}$$

The theory we have studied requires us to have two linearly independent solutions. How can we find a second solution?

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

Repeated roots

The last case left for constant coefficient linear homogeneous ODE is the case where we have a double root of the characteristic equation (i.e. $b^2 - 4ac = 0$). In this case, our method produces a single solution

$$y_1(t) = e^{\frac{-b}{2a}t}$$

The theory we have studied requires us to have two linearly independent solutions. How can we find a second solution?

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

We know that, given a single solution, y_1 , Cy_1 is also a solution for any constant C.

Idea: look for solutions of the form $y_2(t) = v(t)y_1(t)$.

$$y'_2 = v'y_1 + vy'_1$$

 $y''_2 = v''y_1 + 2v'y'_1 + vy1''$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

We know that, given a single solution, y_1 , Cy_1 is also a solution for any constant *C*. Idea: look for solutions of the form $y_2(t) = v(t)y_1(t)$.

$$y'_2 = v'y_1 + vy'_1$$

 $y''_2 = v''y_1 + 2v'y'_1 + vy1''$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

We know that, given a single solution, y_1 , Cy_1 is also a solution for any constant C.

Idea: look for solutions of the form $y_2(t) = v(t)y_1(t)$.

$$y'_2 = v'y_1 + vy'_1$$

 $y''_2 = v''y_1 + 2v'y'_1 + vy1''$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order Group work

Jext class

Plugging this into the equation

$$\begin{aligned} a(v''y_1 + 2v'y_1' + vy_1'') + b(v'y_1 + vy_1') + c(vy_1) &= \\ v(ay_1'' + by_1' + cy_1) + (av''y_1 + 2av'y_1' + bv'y_1) \\ &= v(0) + av''e^{-\frac{b}{2a}t} + \left(2av'\frac{-b}{2a} + bv'\right)e^{-\frac{b}{2a}t} \\ &= av''e^{-\frac{-b}{2a}t} \end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Conclusion: v'' = 0, i.e $v(t) = c_1 t + c_2$.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

Plugging this into the equation

$$\begin{aligned} a(v''y_1 + 2v'y_1' + vy_1'') + b(v'y_1 + vy_1') + c(vy_1) &= \\ v(ay_1'' + by_1' + cy_1) + (av''y_1 + 2av'y_1' + bv'y_1) \\ &= v(0) + av''e^{-\frac{b}{2a}t} + \left(2av'\frac{-b}{2a} + bv'\right)e^{-\frac{b}{2a}t} \\ &= av''e^{-\frac{-b}{2a}t} \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion: v'' = 0, i.e $v(t) = c_1 t + c_2$.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

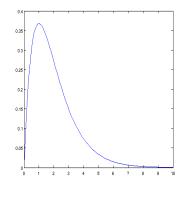


Figure: $y_2(t) = te^{-t}$

Math 23, Spring 2007

Scott Pauls

Last class

Today's materia Complex roots Complex roots Reduction of order Group work

Nevt class

うせん 前 (本語)(本語)(本語)(4日)

For the case of repeated roots, our method has yielded two solutions:

$$y_1(t) = e^{-\frac{b}{2a}t}, \ y_2 = t e^{-\frac{b}{2a}t}$$

Do these form a fundamental set of solutions?

$$W(y_1, y_2, t) = det \begin{pmatrix} e^{-\frac{b}{2a}t} & te^{-\frac{b}{2a}t} \\ -\frac{b}{2a}e^{-\frac{b}{2a}t} & e^{-\frac{b}{2a}t} - t\frac{b}{2a}e^{-\frac{b}{2a}t} \end{pmatrix} = e^{-\frac{b}{a}t}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Conclusion: these solutions for a fundamental set of solutions

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order Group work

For the case of repeated roots, our method has yielded two solutions:

$$y_1(t) = e^{-rac{b}{2a}t}, \ y_2 = t e^{-rac{b}{2a}t}$$

Do these form a fundamental set of solutions?

$$W(y_1, y_2, t) = det \begin{pmatrix} e^{-\frac{b}{2a}t} & te^{-\frac{b}{2a}t} \\ -\frac{b}{2a}e^{-\frac{b}{2a}t} & e^{-\frac{b}{2a}t} - t\frac{b}{2a}e^{-\frac{b}{2a}t} \end{pmatrix} = e^{-\frac{b}{a}t}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Conclusion: these solutions for a fundamental set of solutions

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order Group work

General second order linear equations Reduction of order

If you have one solution, $y_1(t)$, of a differential equation

y'' + p(t)y' + q(t)y = 0

We can use reduction of order to try to find another by guessing the second solution has the form $y_2(t) = v(t)y_1(t)$. If we plug this into the ODE, we get an auxillary equation

 $y_1v'' + (2y_1' + py_1)v' = 0$

This is a first order equation in v' and can be solved using earlier techniques (e.g. integrating factors).

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order Group work

General second order linear equations Reduction of order

If you have one solution, $y_1(t)$, of a differential equation

$$y'' + p(t)y' + q(t)y = 0$$

We can use reduction of order to try to find another by guessing the second solution has the form $y_2(t) = v(t)y_1(t)$. If we plug this into the ODE, we get an auxillary equation

$$y_1v'' + (2y'_1 + py_1)v' = 0$$

This is a first order equation in v' and can be solved using earlier techniques (e.g. integrating factors).

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order Group work 1. Solve the following initial value problem

$$y'' - 2y' + y = 0, y(0) = 1, y'(0) = 1$$

2. Consider the ODE

$$t^2y''-4ty'+6y=0$$

where t > 0.

- Confirm that $y_1(t) = t^2$ is a solution
- Find a second solution using reduction of order

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

Work for next class

- Reading: 3.6, 3.7
- Homework 4 is due monday 4/23

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Complex roots Complex roots Reduction of order

Group work

Next class

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで