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Material from last class

I Linear homogeneous second order constant
coefficient ODE

ay ′′ + by ′ + cy = 0

I Characteristic equation

ar2 + br + c = 0

I Linear combinations of solutions
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General second order equations

The most general linear second order equation is of the
form:

y ′′ + p(t)y ′ + q(t)y = g(t)

We often write this in operator notation:

L =
d2

dt2 + p(t)
d
dt

+ q(t)

Then the ODE becomes

L(y(t)) = g(t)
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Linear second order equations
Existence and uniqueness

Theorem
Consider the initial value problem

y ′′ + p(t)y ′ + q(t)y = g(t), y(t0) = y0, y ′(t0) = y ′
0

where p, q and g are continuous on an open interval I
that contains the point t0. Then there is exactly one
solution y = φ(t) of this problem, and the solution exists
throughout the interval I.
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Linear homogeneous second order equations
The principle of superposition

Theorem
If y1 and y2 are solutions to L[y ] = 0 then any linear
combination of y1 and y2 is also a solution.
Q: Will this be enough to find the unique solution if L
satisfies the conditions of the existence and uniqueness
theorem?
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Linear homogeneous second order equations

To answer this we rewrite

c1y1(t0) + c2y2(t0) = y0

c1y ′
1(t0) + c2y ′

2(t0) = y ′
0

in matrix form:(
y1(t0) y2(t0)
y ′

1(t0) y ′
2(t0)

) (
c1
c2

)
=

(
y0
y ′

0

)
We know that there is a unique solution {c1, c2} if

det
(

y1(t0) y2(t0)
y ′

1(t0) y ′
2(t0)

)
= y1(t0)y ′

2(t0)− y2(t0)y ′
1(t0) 6= 0
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Linear homogeneous first order equations
The Wronskian

W (y1, y2, t0) = y1(t0)y ′
2(t0)− y2(t0)y ′

1(t0)

is called the Wronskian.

Theorem
Suppose that y1 and y2 are solutions to L[y ] = 0 and
W (y1, y2, t0) 6= 0. Then, the initial value problem

L[y ] = 0, y(t0) = y0, y ′(t0) = t ′0

has a unique solution.

Corollary
If the characteristic equation of a second order linear
homogeneous constant coefficient ODE has distinct real
roots. The an associated initial value problem of this form
has a unique solution.
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Find the Wronskian of the following functions:
1.

e2t , e−3t/2

2.
et sin(t), et

3.
cos(θ)2, 1 + cos(2θ)

At which points are the Wronksians nonzero (i.e. at which
points do these functions form a fundamental set of
solutions)?
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Work for next class

I Reading: 3.3
I Homework 3 is due monday 4/16
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