\\ \title{

Math 23, Spring 2007

}
 \title{

Math 23, Spring 2007

}

Lecture 7

Last class

Today's material

Scott Pauls ${ }^{1}$

${ }^{1}$ Department of Mathematics
Dartmouth College
4/11/07

Outline

Last class

Today's material
Linear second order equations The Wronskian

Group work

Next class

Material from last class

- Linear homogeneous second order constant coefficient ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

- Linear combinations of solutions

General second order equations

The most general linear second order equation is of the form:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

We often write this in operator notation:

Then the ODE becomes

$$
L(y(t))=g(t)
$$

General second order equations

The most general linear second order equation is of the form:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

We often write this in operator notation:

$$
L=\frac{d^{2}}{d t^{2}}+p(t) \frac{d}{d t}+q(t)
$$

Then the ODE becomes

$$
L(y(t))=g(t)
$$

Linear second order equations

Existence and uniqueness

Theorem

Consider the initial value problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

where p, q and g are continuous on an open interval I that contains the point t_{0}. Then there is exactly one solution $y=\phi(t)$ of this problem, and the solution exists throughout the interval I.

Linear homogeneous second order equations
The principle of superposition

Theorem
If y_{1} and y_{2} are solutions to $L[y]=0$ then any linear combination of y_{1} and y_{2} is also a solution.
Q: Will this be enough to find the unique solution if L satisfies the conditions of the existence and uniqueness theorem?

Linear homogeneous second order equations
The principle of superposition

Theorem
If y_{1} and y_{2} are solutions to $L[y]=0$ then any linear combination of y_{1} and y_{2} is also a solution.
Q: Will this be enough to find the unique solution if L satisfies the conditions of the existence and uniqueness theorem?

Linear homogeneous second order equations

To answer this we rewrite

$$
\begin{aligned}
& c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=y_{0} \\
& c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{aligned}
$$

in matrix form:

$$
\left(\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{y_{0}}{y_{0}^{\prime}}
$$

We know that there is a unique solution $\left\{c_{1}, c_{2}\right\}$ if

Linear homogeneous second order equations

To answer this we rewrite

$$
\begin{aligned}
& c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=y_{0} \\
& c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{aligned}
$$

in matrix form:

$$
\left(\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{y_{0}}{y_{0}^{\prime}}
$$

We know that there is a unique solution $\left\{c_{1}, c_{2}\right\}$ if

$$
\operatorname{det}\left(\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right) \neq 0
$$

Linear homogeneous first order equations
The Wronskian

$$
W\left(y_{1}, y_{2}, t_{0}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)
$$

is called the Wronskian.
Theorem
Suppose that y_{1} and y_{2} are solutions to $L[y]=0$ and $W\left(y_{1}, y_{2}, t_{0}\right) \neq 0$. Then, the initial value problem

$$
L[y]=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=t_{0}^{\prime}
$$

has a unique solution.
Corollary
If the characteristic equation of a second order linear homogeneous constant coefficient ODE has distinct real roots. The an associated initial value problem of this form has a unique solution.

Linear homogeneous first order equations

The Wronskian

$$
W\left(y_{1}, y_{2}, t_{0}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)
$$

is called the Wronskian.
Theorem
Suppose that y_{1} and y_{2} are solutions to $L[y]=0$ and $W\left(y_{1}, y_{2}, t_{0}\right) \neq 0$. Then, the initial value problem

$$
L[y]=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=t_{0}^{\prime}
$$

has a unique solution.
Corollary
If the characteristic equation of a second order linear
homogeneous constant coefficient ODE has distinct real
roots. The an associated initial value problem of this form
has a unique solution.

Linear homogeneous first order equations

 The Wronskian$$
W\left(y_{1}, y_{2}, t_{0}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)
$$

is called the Wronskian.
Theorem
Suppose that y_{1} and y_{2} are solutions to $L[y]=0$ and $W\left(y_{1}, y_{2}, t_{0}\right) \neq 0$. Then, the initial value problem

$$
L[y]=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=t_{0}^{\prime}
$$

has a unique solution.
Corollary
If the characteristic equation of a second order linear homogeneous constant coefficient ODE has distinct real roots. The an associated initial value problem of this form has a unique solution.

Find the Wronskian of the following functions: 1.

$$
e^{2 t}, e^{-3 t / 2}
$$

2.

$$
e^{t} \sin (t), e^{t}
$$

3.

$$
\cos (\theta)^{2}, 1+\cos (2 \theta)
$$

At which points are the Wronksians nonzero (i.e. at which points do these functions form a fundamental set of solutions)?

Work for next class

- Reading: 3.3
- Homework 3 is due monday $4 / 16$

