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Methods of solution

I Linear first order equations: integrating factors
I Separable Equations
I Fundamentally integration techniques
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Uniqueness

Under what conditions can we determine that a solution
is unique?

I Separable equations: one (combined) integration
constant

I Linear first order equations: after simplification, one
integration constant

I Specifying an initial value determines the constant
I Q: Does a first order initial value problem have a

unique solution?
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A first Theorem

Theorem
If the function p and g are continouous on an open
interval I : α < t < β containing the point t = t0, then
there exists a unique function y = φ(t) that satisfies

y ′ + p(t)y = g(t), y(t0) = y0

Example
Solve

y ′ +
1
2t

y =
√

t

subject to the following conditions:
1. y(0) = 0
2. y(1) = 1
3. y(−1) = 0
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An illustrative example

Solve
y ′ = y

1
3 , y(0) = 0



Math 23, Spring
2007

Scott Pauls

Last class

Today’s material
Existence and Uniqueness

Exact Equations

Group Work

Next class

A second theorem

Theorem
Let the function f and fy be continuous on some rectangle
α < t < β, γ < y < δ containing the point (t0, y0). Then, in
some interval t0 − h < t < t0 + h contained in (α, β), there
is a unique solution y = φ(t) of the initial value problem

y ′ = f (t , y), y(t0) = y0
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Integrating factors

In the previous methods, we have used calculus rules to
change the ODE into a form we can integrate (e.g.
product rule, chain rule). We can use this philosophy
more generally:

Example
Solve

2x + y2 + 2xyy ′ = 0

by observing that

d
dx

(x2 + xy2) = 2x + y2 + 2xyy ′
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Integrating factors
In general, if our ODE is given by

M(x , y) + N(x , y)y ′ = 0

If we can find a ψ so that ψx = M, ψy = N then
ψ(x , y) = C defines a solution to the equation. Such an
equation is called exact.

Theorem
Let the function M,N,My ,Nx be continuous on a
rectangular region R. Then

M(x , y) + N(x , y)y ′ = 0

is an exact ODE on R if and only if

My = Nx

on all of R.
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Further examples

Solve the following ODE
I

(2x + 3) + (2y − 2)y ′ = 0

I

(3x2 − 2xy + 2) + (6y2 − x2 + 3)y ′ = 0
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Work for next class

I Reading: 2.7
I Homework 2 is due 4/9
I Matlab intro tomorrow!
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