Math 23, Spring 2007 Lecture 3

Scott Pauls 1

¹Department of Mathematics Dartmouth College

4/2/07

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Vext class

Outline

Last class

Today's material

Existence and Uniqueness Exact Equations

Group Work

Next class

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Vext class

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Methods of solution

- Linear first order equations: integrating factors
- Separable Equations
- Fundamentally integration techniques

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Next class

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Uniqueness

Under what conditions can we determine that a solution is unique?

- Separable equations: one (combined) integration constant
- Linear first order equations: after simplification, one integration constant
- Specifying an initial value determines the constant
- Q: Does a first order initial value problem have a unique solution?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Uniqueness

Under what conditions can we determine that a solution is unique?

- Separable equations: one (combined) integration constant
- Linear first order equations: after simplification, one integration constant
- Specifying an initial value determines the constant
- Q: Does a first order initial value problem have a unique solution?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Uniqueness

Under what conditions can we determine that a solution is unique?

- Separable equations: one (combined) integration constant
- Linear first order equations: after simplification, one integration constant
- Specifying an initial value determines the constant
- Q: Does a first order initial value problem have a unique solution?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

A first Theorem

Theorem

If the function p and g are continuous on an open interval I : $\alpha < t < \beta$ containing the point $t = t_0$, then there exists a unique function $y = \phi(t)$ that satisfies

$$y' + p(t)y = g(t), y(t_0) = y_0$$

Example

Solve

$$y' + \frac{1}{2t}y = \sqrt{t}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

subject to the following conditions:

1.
$$y(0) = 0$$

2. $y(1) = 1$
3. $y(-1) = 0$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

A first Theorem

Theorem

If the function p and g are continuous on an open interval I : $\alpha < t < \beta$ containing the point $t = t_0$, then there exists a unique function $y = \phi(t)$ that satisfies

$$y' + p(t)y = g(t), y(t_0) = y_0$$

Example

Solve

$$y' + \frac{1}{2t}y = \sqrt{t}$$

subject to the following conditions:

1.
$$y(0) = 0$$

2. $y(1) = 1$
3. $y(-1) = 0$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

An illustrative example

Solve

$$y' = y^{\frac{1}{3}}, \ y(0) = 0$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Vext class

A second theorem

Theorem

Let the function f and f_y be continuous on some rectangle $\alpha < t < \beta, \gamma < y < \delta$ containing the point (t_0, y_0) . Then, in some interval $t_0 - h < t < t_0 + h$ contained in (α, β) , there is a unique solution $y = \phi(t)$ of the initial value problem

$$\mathbf{y}'=\mathbf{f}(t,\mathbf{y}), \ \mathbf{y}(t_0)=\mathbf{y}_0$$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Integrating factors

In the previous methods, we have used calculus rules to change the ODE into a form we can integrate (e.g. product rule, chain rule). We can use this philosophy more generally:

Example

Solve

$$2x + y^2 + 2xyy' = 0$$

by observing that

$$\frac{d}{dx}(x^2+xy^2)=2x+y^2+2xyy'$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Integrating factors

In general, if our ODE is given by

$$M(x,y) + N(x,y)y' = 0$$

If we can find a ψ so that $\psi_x = M$, $\psi_y = N$ then $\psi(x, y) = C$ defines a solution to the equation. Such an equation is called *exact*.

Theorem

Let the function M, N, M_y, N_x be continuous on a rectangular region R. Then

$$M(x,y)+N(x,y)y'=0$$

is an exact ODE on R if and only if

$$M_y = N_x$$

on all of R.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Further examples

Solve the following ODE

(2x+3) + (2y-2)y' = 0 $(3x^2 - 2xy + 2) + (6y^2 - x^2 + 3)y' = 0$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Vext class

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Work for next class

- Reading: 2.7
- Homework 2 is due 4/9
- Matlab intro tomorrow!

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Exact Equations

Group Work

Next class

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで