Math 23, Spring 2007

Lecture 3

Scott Pauls ${ }^{1}$

${ }^{1}$ Department of Mathematics
Dartmouth College

4/2/07

Outline

Last class

Today's material
Existence and Uniqueness
Exact Equations

Group Work

Next class

Methods of solution

- Linear first order equations: integrating factors
- Separable Equations
- Fundamentally integration techniques

Uniqueness

Under what conditions can we determine that a solution is unique?

- Separable equations: one (combined) integration constant
- Linear first order equations: after simplification, one integration constant
- Specifying an initial value determines the constant
- Q: Does a first order initial value problem have a unique solution?

Uniqueness

Under what conditions can we determine that a solution is unique?

- Separable equations: one (combined) integration constant
- Linear first order equations: after simplification, one integration constant
- Specifying an initial value determines the constant

Q: Does a first order initial value problem have a unique solution?

Uniqueness

Under what conditions can we determine that a solution is unique?

- Separable equations: one (combined) integration constant
- Linear first order equations: after simplification, one integration constant
- Specifying an initial value determines the constant
- Q: Does a first order initial value problem have a unique solution?

A first Theorem

Theorem
If the function p and g are continouous on an open interval I: $\alpha<t<\beta$ containing the point $t=t_{0}$, then there exists a unique function $y=\phi(t)$ that satisfies

$$
y^{\prime}+p(t) y=g(t), y\left(t_{0}\right)=y_{0}
$$

Example
Solve

A first Theorem

Theorem
If the function p and g are continouous on an open interval I: $\alpha<t<\beta$ containing the point $t=t_{0}$, then there exists a unique function $y=\phi(t)$ that satisfies

$$
y^{\prime}+p(t) y=g(t), y\left(t_{0}\right)=y_{0}
$$

Example

Solve

$$
y^{\prime}+\frac{1}{2 t} y=\sqrt{t}
$$

subject to the following conditions:

$$
\begin{aligned}
& \text { 1. } y(0)=0 \\
& \text { 2. } y(1)=1 \\
& \text { 3. } y(-1)=0
\end{aligned}
$$

An illustrative example

Solve

$$
y^{\prime}=y^{\frac{1}{3}}, y(0)=0
$$

A second theorem

Theorem
Let the function f and f_{y} be continuous on some rectangle $\alpha<t<\beta, \gamma<y<\delta$ containing the point (t_{0}, y_{0}). Then, in some interval $t_{0}-h<t<t_{0}+h$ contained in (α, β), there is a unique solution $y=\phi(t)$ of the initial value problem

$$
y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}
$$

Integrating factors

In the previous methods, we have used calculus rules to change the ODE into a form we can integrate (e.g. product rule, chain rule). We can use this philosophy more generally:

Example

Solve

$$
2 x+y^{2}+2 x y y^{\prime}=0
$$

by observing that

$$
\frac{d}{d x}\left(x^{2}+x y^{2}\right)=2 x+y^{2}+2 x y y^{\prime}
$$

Integrating factors

In general, if our ODE is given by

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

If we can find a ψ so that $\psi_{x}=M, \psi_{y}=N$ then
$\psi(x, y)=C$ defines a solution to the equation. Such an equation is called exact.
Theorem
Let the function M, N, M_{y}, N_{x} be continuous on a rectangular region R. Then

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is an exact ODE on R if and only if

$$
M_{y}=N_{x}
$$

on all of R.

Further examples

Solve the following ODE

Today's material
Existence and Uniqueness
Exact Equations

$$
\left(3 x^{2}-2 x y+2\right)+\left(6 y^{2}-x^{2}+3\right) y^{\prime}=0
$$

Work for next class

- Reading: 2.7
- Homework 2 is due 4/9
- Matlab intro tomorrow!

