Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Vext class

Math 23, Spring 2007 Lecture 25

Scott Pauls

Department of Mathematics Dartmouth College

5/23/07

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Material from last class

The heat equation

$$\alpha^2 u_{xx} = u_t$$

- 1. with conditions u(x, 0) = f(x), u(0, t) = u(L, t) = 0: Fourier sine series
- 2. with conditions u(x, 0) = f(x), $u_x(0, t) = u_x(L, t) = 0$: Fourier cosine series

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

A model for wave propagation in one-dimensional media:

 $a^2 u_{xx} = u_{tt}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Initial conditions: $u(x, 0) = f(x), u_t(x, 0) = g(x)$ Boundary conditions: Fixed ends - u(0, t) = u(L, t) = 0 Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Vext class

A model for wave propagation in one-dimensional media:

$$a^2 u_{xx} = u_{tt}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Initial conditions: u(x,0) = f(x), $u_t(x,0) = g(x)$ Boundary conditions: Fixed ends - u(0, t) = u(L, t) = 0 Math 23, Spring 2007

Scott Pauls

Last class Today's material

Wave equation

First case: g(x) = 0

Separation of variables yields:

 $X'' - \lambda X = 0, \quad T'' - \lambda a^2 T = 0$ X(0) = 0 = X(L), T'(0) = 0 $X(x) = \sin(n\pi x/L), T(t) = \cos(n\pi at/L)$

 $u_n(x,t) = \sin(n\pi x/L)\cos(n\pi at/L)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

First case: g(x) = 0

Separation of variables yields:

$$X'' - \lambda X = 0, \quad T'' - \lambda a^2 T = 0$$
$$X(0) = 0 = X(L), T'(0) = 0$$
$$X(x) = \sin(n\pi x/L), T(t) = \cos(n\pi at/L)$$

 $u_n(x,t) = \sin(n\pi x/L)\cos(n\pi at/L)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Vext class

First case: g(x) = 0

Separation of variables yields:

$$X'' - \lambda X = 0, \quad T'' - \lambda a^2 T = 0$$
$$X(0) = 0 = X(L), T'(0) = 0$$
$$X(x) = \sin(n\pi x/L), T(t) = \cos(n\pi at/L)$$

 $u_n(x,t) = \sin(n\pi x/L)\cos(n\pi at/L)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Superposition

Most general solution:

$$u(x,t) = \sum_{n=1}^{\infty} c_n \sin(n\pi x/L) \cos(n\pi at/L)$$

At *t* = 0,

$$u(x,0) = f(x) = \sum_{n=1}^{\infty} c_n \sin(n\pi x/L)$$

So, expand *f* as a Fourier sine series

$$c_n = \frac{2}{L} \int_0^L f(x) \sin(n\pi x/L) \, dx$$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Vext class

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Second case: f(x) = 0

Separation of variables yields:

 $X'' - \lambda X = 0, \quad T'' - \lambda a^2 T = 0$ $X(0) = 0 = X(L), \quad T(0) = 0$ $X(x) = \sin(n\pi x/L), \quad T(t) = \sin(n\pi at/L)$

 $u_n(x,t) = \sin(n\pi x/L)\sin(n\pi at/L)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Second case: f(x) = 0

Separation of variables yields:

$$X'' - \lambda X = 0, \quad T'' - \lambda a^2 T = 0$$
$$X(0) = 0 = X(L), T(0) = 0$$
$$X(x) = \sin(n\pi x/L), T(t) = \sin(n\pi at/L)$$

 $u_n(x,t) = \sin(n\pi x/L)\sin(n\pi at/L)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Vext class

Second case: f(x) = 0

Separation of variables yields:

$$X'' - \lambda X = 0, \quad T'' - \lambda a^2 T = 0$$

 $X(0) = 0 = X(L), T(0) = 0$
 $X(x) = \sin(n\pi x/L), T(t) = \sin(n\pi at/L)$

 $u_n(x,t) = \sin(n\pi x/L)\sin(n\pi at/L)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Superposition

Most general solution:

$$u(x,t) = \sum_{n=1}^{\infty} c_n \sin(n\pi x/L) \sin(n\pi at/L)$$

At *t* = 0,

$$u_t(x,0) = g(x) = \sum_{n=1}^{\infty} \frac{n\pi ac_n}{L} \sin(n\pi x/L)$$

So, expand *f* as a Fourier sine series

$$\frac{n\pi ac_n}{L} = \frac{2}{L} \int_0^L f(x) \sin(n\pi x/L) \, dx$$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Vext class

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 うらぐ

Third case: General f(x), g(x)

Simply add together the two previous solutions

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Vext class

Applet

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Vext class

http://falstad.com/loadedstring/

Work for next class

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Wave equation

Next class

- Read 10.5,10.7,10.8
- Homework 9 assigned but is not due! These are practice problems for the final.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●