Math 23, Spring 2007

Lecture 25

Scott Pauls

Department of Mathematics
Dartmouth College

5/23/07

Material from last class

The heat equation

$$
\alpha^{2} u_{x x}=u_{t}
$$

1. with conditions $u(x, 0)=f(x), u(0, t)=u(L, t)=0$: Fourier sine series
2. with conditions $u(x, 0)=f(x), u_{x}(0, t)=u_{x}(L, t)=0$: Fourier cosine series

Wave equation

A model for wave propagation in one-dimensional media:

$$
a^{2} u_{x x}=u_{t t}
$$

Initial conditions: $u(x, 0)=f(x), u_{t}(x, 0)=g(x)$
Boundary conditions: Fixed ends $-u(0, t)=u(L, t)=0$

Wave equation

A model for wave propagation in one-dimensional media:

$$
a^{2} u_{x x}=u_{t t}
$$

Initial conditions: $u(x, 0)=f(x), u_{t}(x, 0)=g(x)$
Boundary conditions: Fixed ends $-u(0, t)=u(L, t)=0$

Separation of variables

First case: $g(x)=0$
Separation of variables yields:

$$
\begin{gathered}
X^{\prime \prime}-\lambda X=0, \quad T^{\prime \prime}-\lambda a^{2} T=0 \\
X(0)=0=X(L), T^{\prime}(0)=0
\end{gathered}
$$

$X(x)=\sin (n \pi x / L), T(t)=\cos (n \pi a t / L)$

Separation of variables

First case: $g(x)=0$
Separation of variables yields:

$$
\begin{array}{r}
X^{\prime \prime}-\lambda X=0, \quad T^{\prime \prime}-\lambda a^{2} T=0 \\
X(0)=0=X(L), T^{\prime}(0)=0 \\
X(x)=\sin (n \pi x / L), T(t)=\cos (n \pi a t / L)
\end{array}
$$

Separation of variables

First case: $g(x)=0$
Separation of variables yields:

$$
\begin{array}{r}
X^{\prime \prime}-\lambda X=0, \quad T^{\prime \prime}-\lambda a^{2} T=0 \\
X(0)=0=X(L), T^{\prime}(0)=0 \\
X(x)=\sin (n \pi x / L), T(t)=\cos (n \pi a t / L)
\end{array}
$$

$$
u_{n}(x, t)=\sin (n \pi x / L) \cos (n \pi a t / L)
$$

Superposition

Most general solution:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L) \cos (n \pi a t / L)
$$

At $t=0$,

$$
u(x, 0)=f(x)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L)
$$

So, expand f as a Fourier sine series

$$
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x
$$

Separation of variables

Second case: $f(x)=0$
Separation of variables yields:

$$
\begin{gathered}
X^{\prime \prime}-\lambda X=0, \quad T^{\prime \prime}-\lambda a^{2} T=0 \\
X(0)=0=X(L), T(0)=0
\end{gathered}
$$

$X(x)=\sin (n \pi x / L), T(t)=\sin (n \pi a t / L)$

$$
u_{n}(x, t)=\sin (n \pi x / L) \sin (n \pi a t / L)
$$

Separation of variables

Second case: $f(x)=0$
Separation of variables yields:

$$
\begin{array}{r}
X^{\prime \prime}-\lambda X=0, \quad T^{\prime \prime}-\lambda a^{2} T=0 \\
X(0)=0=X(L), T(0)=0 \\
X(x)=\sin (n \pi x / L), T(t)=\sin (n \pi a t / L)
\end{array}
$$

Separation of variables

Second case: $f(x)=0$
Separation of variables yields:

$$
\begin{array}{r}
X^{\prime \prime}-\lambda X=0, \quad T^{\prime \prime}-\lambda a^{2} T=0 \\
X(0)=0=X(L), T(0)=0 \\
X(x)=\sin (n \pi x / L), T(t)=\sin (n \pi a t / L) \\
u_{n}(x, t)=\sin (n \pi x / L) \sin (n \pi a t / L)
\end{array}
$$

Superposition

Most general solution:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L) \sin (n \pi a t / L)
$$

At $t=0$,

$$
u_{t}(x, 0)=g(x)=\sum_{n=1}^{\infty} \frac{n \pi a c_{n}}{L} \sin (n \pi x / L)
$$

So, expand f as a Fourier sine series

$$
\frac{n \pi a c_{n}}{L}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x
$$

Separation of variables

Third case: General $f(x), g(x)$
Simply add together the two previous solutions

Applet

http://falstad.com/loadedstring/

Work for next class

- Read 10.5,10.7,10.8
- Homework 9 assigned but is not due! These are practice problems for the final.

