Math 23, Spring 2007

Lecture 24

Scott Pauls

Department of Mathematics
Dartmouth College
5/21/07

Material from last class

The heat equation

$$
\alpha^{2} u_{x x}=u_{t}
$$

with conditions $u(x, 0)=f(x), u(0, t)=u(L, t)=0$.

1. Separate variables to get

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{\alpha^{2} T}=\lambda
$$

or

$$
X^{\prime \prime}-\lambda X=0, \quad T^{\prime}-\alpha^{2} \lambda T=0
$$

2. Translation of boundary conditions

$$
X(0)=0=X(L)
$$

Eigenvalue problem

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solving the eigenvalue problem

For the X equation, we have a two point boundary value problem

$$
X^{\prime \prime}-\lambda X=0, \quad X(0)=0=X(L)
$$

Solutions: $X_{n}(x)=\sin (n \pi x / L), n=1,2,3, \ldots$ with eigenvalues

Eigenvalue problem

For the X equation, we have a two point boundary value problem

$$
X^{\prime \prime}-\lambda X=0, \quad X(0)=0=X(L)
$$

Solutions: $X_{n}(x)=\sin (n \pi x / L), n=1,2,3, \ldots$ with eigenvalues $\lambda_{n}=-\frac{n^{2} \pi^{2}}{L^{2}}$.

T equation

For these eigenvalues ($\lambda_{n}=-\frac{n^{2} \pi^{2}}{L^{2}}$), solve for T via

$$
T^{\prime}+\frac{\alpha^{2} n^{2} \pi^{2}}{L^{2}} T=0
$$

So, for each n we have a product solution to $\alpha^{2} u_{x x}=u_{t}$ with $u(0, t)=u(L, t)=0$:

Scott Pauls

T equation

Math 23, Spring 2007

Scott Pauls

For these eigenvalues ($\lambda_{n}=-\frac{n^{2} \pi^{2}}{L^{2}}$), solve for T via

$$
\begin{aligned}
& T^{\prime}+\frac{\alpha^{2} n^{2} \pi^{2}}{L^{2}} T=0 \\
& T_{n}(t)=e^{-\frac{\alpha^{2} n^{2} \pi^{2}}{L^{2}} t}
\end{aligned}
$$

So, for each n we have a product solution to $\alpha^{2} u_{x x}=u_{t}$ with $u(0, t)=u(L, t)=0$:

Last class
Today's material Solving the eigenvalue

T equation

For these eigenvalues ($\lambda_{n}=-\frac{n^{2} \pi^{2}}{L^{2}}$), solve for T via

$$
\begin{aligned}
& T^{\prime}+\frac{\alpha^{2} n^{2} \pi^{2}}{L^{2}} T=0 \\
& T_{n}(t)=e^{-\frac{\alpha^{2} n^{2} \pi^{2}}{L^{2}} t}
\end{aligned}
$$

So, for each n we have a product solution to $\alpha^{2} u_{x x}=u_{t}$ with $u(0, t)=u(L, t)=0$:

$$
u_{n}(x, t)=e^{-\frac{\alpha^{2} n^{2} \pi^{2}}{L^{2}} t} \sin (n \pi x / L)
$$

Superposition

Now, it is highly unlikely that

$$
u_{n}(x, 0)=\sin (n \pi x / L)=f(x)
$$

so we are unable to impose the last condition on a single choice of solution. So, we use the principle of superposition

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} u_{n}(x, t) \\
& =\sum_{n=1}^{\infty} c_{n} e^{-\frac{\alpha^{2} n^{2} \pi^{2}}{L^{2}} t} \sin (n \pi x / L)
\end{aligned}
$$

This is a Fourier sine series when $t=0$ so we need to represent f as such a series.

Superposition

Now, it is highly unlikely that

$$
u_{n}(x, 0)=\sin (n \pi x / L)=f(x)
$$

so we are unable to impose the last condition on a single choice of solution. So, we use the principle of superposition

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} u_{n}(x, t) \\
& =\sum_{n=1}^{\infty} c_{n} e^{-\frac{\alpha^{2} n^{2} \pi^{2}}{L^{2}} t} \sin (n \pi x / L)
\end{aligned}
$$

This is a Fourier sine series when $t=0$ so we need to represent f as such a series.

Fourier sine series representation

Steps:

1. Make f odd an periodic with period $2 L$
2. Compute coefficients

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

3. Then $c_{n}=b_{n}$

Example

$$
L=\pi, f(x)=(\pi-x) x^{3}
$$

http://www.math.cornell.edu/ bterrell/h1/heat1.html

Other types of boundary conditions

Insulated ends:

$$
\alpha^{2} u_{x x}=u_{t}, \quad u_{x}(0, t)=u_{x}(L, t)=0, u(x, 0)=f(x)
$$

Also called Neumann boundary conditions.

Two point boundary value problem:

Other types of boundary conditions

Insulated ends:

$$
\alpha^{2} u_{x x}=u_{t}, \quad u_{x}(0, t)=u_{x}(L, t)=0, u(x, 0)=f(x)
$$

Also called Neumann boundary conditions.
Two point boundary value problem:

$$
X^{\prime \prime}-\lambda X=0, \quad X^{\prime}(0)=X^{\prime}(L)=0
$$

and

$$
T^{\prime}-\alpha^{2} \lambda T=0
$$

Insulated ends

Math 23, Spring 2007

Scott Pauls

Solutions:

$$
\lambda_{n}=n^{2} \pi^{2} / L, \quad X_{n}=\cos (n \pi x / L), \quad T_{n}=e^{-\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t}
$$

Last class
Today's material
Solving the eigenvalue
problem

So, $u_{0}(x, t)=1$,

$$
u_{n}(x, t)=e^{-\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t} \cos (n \pi x / L)
$$

And

$$
u(x, t)=1+\sum_{n=1}^{\infty} c_{n} e^{-\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t} \cos (n \pi x / L)
$$

where

$$
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos (n \pi x / L) d x
$$

Work for next class

- Read 10.5,10.7,10.8
- Homework 9 assigned but is not due! These are practice problems for the final.

