Math 23, Spring 2007

Scott Pauls

Last class

Today's material

Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

Next class

Math 23, Spring 2007 Lecture 23

Scott Pauls

Department of Mathematics Dartmouth College

5/18/07

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Material from last class

- Fourier series
- Computing Fourier coefficients
- A computation from last time:

$$f(x) = \begin{cases} -x, & -1 \le x < 0\\ x, & 0 \le x \le 1 \end{cases}$$
$$b_n = \int_{-1}^1 f(x) \sin(n\pi x) \, dx$$
$$= -\int_{-1}^0 x \sin(n\pi x) \, dx + \int_0^1 x \sin(n\pi x) \, dx$$
$$= \frac{1}{n\pi} \cos(n\pi) - \frac{1}{n\pi} \cos(n\pi) = 0$$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

Next class

・ロト・四ト・モート ヨー うへぐ

Visualizations

A nice applet for looking at Fourier series: http://falstad.com/fourier/

Observations:

- Discontinuities in f lead to convergence problems in the series: the Gibbs effect
- Some functions have only sin terms while others have only cos terms.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

Vext class

Visualizations

A nice applet for looking at Fourier series: http://falstad.com/fourier/

Observations:

Discontinuities in f lead to convergence problems in the series: the Gibbs effect

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

 Some functions have only sin terms while others have only cos terms. Math 23, Spring 2007

Scott Pauls

Last class

Today's material Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

Vext class

Even and Odd functions

Definition

A function *f* is even if f(-x) = f(x) while a function is odd if f(-x) = -f(x)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Examples: sin(x) is odd, cos(x) is even

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

Vext class

Even and Odd functions

Properties:

- 1. The sum (resp. difference) and product (resp. quotient) of two even functions are even.
- The sum (resp. difference) of two odd functions is odd. The product (resp. quotient) of two odd functions is even.
- 3. The product (resp. quotient) of an odd function and an even function is odd.
- 4. If *f* is odd then

$$\int_{-L}^{L} f(x) \, dx = 0$$

5. If *f* is even then

$$\int_{-L}^{L} f(x) \, dx = 2 \int_{0}^{L} f(x) \, dx$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

Next class

Fourier cosine series

Suppose that f, f' are piecewise continuous on $-L \le x < L$ and that f is an even periodic function with period 2*L*. Then,

$$a_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
$$b_n = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

f is said to have a Fourier cosine series.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

lext class

Fourier sine series

Suppose that f, f' are piecewise continuous on $-L \le x < L$ and that f is an odd periodic function with period 2*L*. Then,

$$b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$
$$a_n = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

f is said to have a Fourier sine series.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

lext class

Half range expansions

We can extend our analysis to function defined on an interval of the form $0 \le x < L$.

- 1. Extend f as an even or odd function on [-L, L]
- 2. Extend the extension to be periodic
- 3. Compute Fourier cosine or sine series

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

lext class

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Heat flow

A model for heat conduction in a thin heat conducting solid bar. Let u(x, t) denote the temperature at point x on the bar at time t. Then,

$$\alpha^2 u_{xx} = u_t, \ 0 < x < L, t > 0$$

$\alpha^{\rm 2}$ is a constant known as the thermal diffusivity.

Additional assumptions:

- An initial temperature distribution: u(x, 0) = f(x)
- Boundary conditions on the ends of the rod. For example:
 - 1. Fixed temperature: u(0, t) = a, u(L, t) = b
 - 2. Insulated ends: $u_x(0, t) = 0 = u_x(L, t)$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

Next class

Heat flow

A model for heat conduction in a thin heat conducting solid bar. Let u(x, t) denote the temperature at point x on the bar at time t. Then,

$$\alpha^2 u_{xx} = u_t, \ 0 < x < L, t > 0$$

 α^2 is a constant known as the thermal diffusivity.

Additional assumptions:

An initial temperature distribution: u(x, 0) = f(x)

Boundary conditions on the ends of the rod. For example:

- 1. Fixed temperature: u(0, t) = a, u(L, t) = b
- 2. Insulated ends: $u_x(0, t) = 0 = u_x(L, t)$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

Next class

Work for next class

- Read 10.5,10.7,10.8
- Homework 8 is due Monday 5/21/07

Math 23, Spring 2007

Scott Pauls

Last class

Today's material

Visualizing the Fourier Representation Even and Odd functions Heat Conduction in a rod

Next class