
Math 23, Spring
2007

Scott Pauls

Last class

Today’s material
A motivating problem

Fourier Series

Fourier Convergence
Theorem

Next class

Math 23, Spring 2007
Lecture 22

Scott Pauls

Department of Mathematics
Dartmouth College

5/16/07



Math 23, Spring
2007

Scott Pauls

Last class

Today’s material
A motivating problem

Fourier Series

Fourier Convergence
Theorem

Next class

Material from last class

I Two point boundary value problems
I Problems with existence and uniqueness
I Eigenvalues and Eigenfunctions
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Laplace’s equation

fxx + fyy = 0

Guess: f (x , y) = X (x)Y (y)

X ′′(x)

X (x)
=

Y ′′(y)

Y (y)
= λ

Reorganizing this gives:

X ′′ − λX = 0, Y ′′ + λY = 0

For different values of λ, these equations have general
solutions that look like either

C1 cos(
√
|λ|t) + C2 sin(

√
|λ|t)

or
C1 cosh(

√
|λ|t) + C2 sinh(

√
|λ|t)
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Series solutions

To form the most general solution, via the principle of
superposition, we would take sums of these solutions
over all eigenvalues λ yielding, for examples, infinite
sums of sin and cos terms:

a0

2
+

∞∑
n=1

an cos
(nπx

L

)
+ bn sin

(nπx
L

)
Such a series is called a Fourier series. At points where
it converges, it gives a function f . In this case, the series
is called the Fourier series of f .
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Fourier series

Some observations:
I Fourier series are periodic
I sin and cos functions are independent (also called

orthogonal)) in the following sense:∫ L

−L
cos

(nπx
L

)
sin

(mπx
L

)
dx = 0

∫ L

−L
cos

(nπx
L

)
cos

(mπx
L

)
dx = 0 if m 6= n

If m = n, the integral equals L.∫ L

−L
sin

(nπx
L

)
sin

(mπx
L

)
dx = 0 if m 6= n

If m = n, the integral equals L.
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Euler-Fourier formulae

Assume for a moment that we have a convergent Fourier
series:

f (x) =
a0

2
+

∞∑
n=1

an cos
(nπx

L

)
+ bn sin

(nπx
L

)
What are the coefficients {an, bn}?

an =
1
L

∫ L

−L
f (x) cos

(nπx
L

)
dx

bn =
1
L

∫ L

−L
f (x) sin

(nπx
L

)
dx
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Examples

Find the Fourier series for
I

f (x) =

{
0, −1 ≤ x < 0
1, 0 ≤ x ≤ 1

I

f (x) =

{
−x , −1 ≤ x < 0
x , 0 ≤ x ≤ 1
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Fourier Convergence Theorem

Theorem
Suppose f and f ′ are piecewise continuous on the
interval −L ≤ x < L. Further suppose that f is defined
outside this interval and is periodic with period 2L. Then f
has a Fourier series whose coefficients are given by our
formulas above. The Fourier series converges to f (x) at
all points where f is continuous and to (f (x+) + f (x−))/2
at all points of discontinuity.
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Work for next class

I Read 10.4
I Homework 8 is due Monday 5/21/07
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