Math 23, Spring 2007

Lecture 21

Scott Pauls

Department of Mathematics
Dartmouth College
5/14/07

Material from last class

- First order Linear Systems of equations with constant coefficients

$$
\vec{x}^{\prime}=A \vec{x}
$$

- Reviewed qualitative results
- Critical points of nonlinear systems and their classification

Up to this point, we have always dealt with initial value problems: ODE(s) with values specified at a single point. E.g.

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

We could also specify data at two different points:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, y\left(t_{1}\right)=y_{1}
$$

This is called a two point boundary value problem.

Up to this point, we have always dealt with initial value problems: ODE(s) with values specified at a single point. E.g.

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

We could also specify data at two different points:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, y\left(t_{1}\right)=y_{1}
$$

This is called a two point boundary value problem.

Existence and Uniqueness

Recall that for an initial value problem, we often had existence and uniqueness. E.g. for linear second order equations, if p, q, g are continuous on an open interval containing t_{0}, we have existence of a unique solution.

Do we have similar results for two-point boundary value problems?

Examples

$$
y^{\prime \prime}+y=0, \quad y(0)=1, y(\pi)=-1
$$

$$
r= \pm i, \quad y(t)=c_{1} \cos (t)+c_{2} \sin (t)
$$

$$
y(0)=1 \Longrightarrow c_{1}=1
$$

$$
y(\pi)=-1 \quad \text { is satisfied }
$$

Examples

$$
y^{\prime \prime}+y=0, \quad y(0)=1, y(\pi)=-1
$$

$$
r= \pm i, \quad y(t)=c_{1} \cos (t)+c_{2} \sin (t)
$$

$$
\begin{gathered}
y(0)=1 \Longrightarrow c_{1}=1 \\
y(\pi)=-1 \text { is satisfied }
\end{gathered}
$$

Unique solution!

Examples

$$
y^{\prime \prime}+y=0, \quad y(0)=0, y(\pi)=0
$$

$$
r= \pm i, \quad y(t)=c_{1} \cos (t)+c_{2} \sin (t)
$$

$$
y(0)=0 \Longrightarrow c_{1}=0
$$

$$
y(\pi)=0
$$

Infinitely many solutions!

Examples

$$
\begin{gathered}
y^{\prime \prime}+y=0, \quad y(0)=0, y(\pi)=0 \\
r= \pm i, \quad y(t)=c_{1} \cos (t)+c_{2} \sin (t) \\
y(0)=0 \Longrightarrow c_{1}=0 \\
y(\pi)=0
\end{gathered}
$$

Infinitely many solutions!

Examples

$$
y^{\prime \prime}-3 y^{\prime}+2=0, y(0)=0, y(1)=0
$$

$$
r=1,2, \quad y(t)=c_{1} e^{t}+c_{2} e^{2 t}
$$

Examples

$$
y^{\prime \prime}-3 y^{\prime}+2=0, y(0)=0, y(1)=0
$$

$$
r=1,2, \quad y(t)=c_{1} e^{t}+c_{2} e^{2 t}
$$

$$
\begin{gathered}
y(0)=0 \Longrightarrow c_{1}=-c_{2} \\
y(1)=0 \Longrightarrow c_{1}\left(e-e^{2}\right)=0 \Longrightarrow c_{1}=0
\end{gathered}
$$

Only the trivial solution!

Conclusion

For two point boundary value problems we may have no solution, a unique solution, or infinitely many solutions.

Conclusion

For two point boundary value problems we may have no solution, a unique solution, or infinitely many solutions. e.g.

$$
\begin{gathered}
y^{\prime \prime}+\lambda^{2} y=0 \\
y(0)=0, y(\pi)=0
\end{gathered}
$$

Values of λ where nontrivial solutions exist are called eigenvalues and the associated solutions are called eigenfunctions.

Conclusion

For two point boundary value problems we may have no solution, a unique solution, or infinitely many solutions. e.g.

$$
\begin{gathered}
y^{\prime \prime}+\lambda^{2} y=0 \\
y(0)=0, y(\pi)=0
\end{gathered}
$$

Values of λ where nontrivial solutions exist are called eigenvalues and the associated solutions are called eigenfunctions.

Examples

Find the eigenvalues and eigenfunctions for

$$
\begin{gathered}
y^{\prime \prime}-\mu^{2} y=0 \\
y(0)=0, y(\pi)=0
\end{gathered}
$$

and

$$
\begin{gathered}
y^{\prime \prime}=0 \\
y(0)=0, y(\pi)=1
\end{gathered}
$$

Work for next class

- Read 10.2-10.3
- Homework 8 is due Monday 5/21/07

