# Math 23, Spring 2007 

Lecture 2

## Scott Pauls ${ }^{1}$

${ }^{1}$ Department of Mathematics<br>Dartmouth College

## 3/30/07

## Outline

## Last class

Today's material
First Order Linear Equations Separable equations

Group Work

Next class

## ODEs

- Introduced ordinary differential equations
- ODEs often arise from modeling physical situations
- Goal: develop methods for finding or approximating solutions
- First tool: direction fields


## Initial value problems

## Definition

An initial value problem is a set of two equations, an ODE and an equation specifying a value of the unknown function at zero.

## Basic Questions:

- Does a solution exist?
- How many solutions are there?


## Initial value problems

## Definition

An initial value problem is a set of two equations, an ODE and an equation specifying a value of the unknown function at zero.

## Example

$$
\begin{aligned}
\frac{d f}{d t} & =f(t) \\
f(0) & =2
\end{aligned}
$$

Basic Questions:

- Does a solution exist?
- How many solutions are there?


## Initial value problems

## Definition

An initial value problem is a set of two equations, an ODE and an equation specifying a value of the unknown function at zero.

## Example

$$
\begin{aligned}
\frac{d f}{d t} & =f(t) \\
f(0) & =2
\end{aligned}
$$

Basic Questions:

- Does a solution exist?
- How many solutions are there?


## First order linear equations

## Definition

A first order linear equation is an ODE of the form

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

where $p(t), g(t)$ are fixed functions of $t$.
How can we solve this equation? Our only method is
integration, but we can't simply integrate because of the dependence on $y$.

## First order linear equations

## Definition

A first order linear equation is an ODE of the form

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

where $p(t), g(t)$ are fixed functions of $t$.
How can we solve this equation? Our only method is integration, but we can't simply integrate because of the dependence on $y$.

## Integrating factors

Main idea: make the left hand side of the equation,

$$
\frac{d y}{d t}+p(t) y
$$

Last class
Today's material
First Order Linear
Equations
Separable equations
look like the result of the product rule"

$$
\frac{d}{d t} y(t) h(t)=\frac{d y}{d t} h(t)+\frac{d h}{d t} y
$$

To do this, we multiply by a factor $\mu(t)$ :

$$
\mu(t) \frac{d y}{d t}+\mu(t) p(t) y
$$

To make this work, we need to find the correct $\mu$ so that $\mu(t) p(t)=\mu^{\prime}(t)$.

## Integrating factors

Main idea: make the left hand side of the equation,

$$
\frac{d y}{d t}+p(t) y
$$

look like the result of the product rule"

$$
\frac{d}{d t} y(t) h(t)=\frac{d y}{d t} h(t)+\frac{d h}{d t} y
$$

To do this, we multiply by a factor $\mu(t)$ :

$$
\mu(t) \frac{d y}{d t}+\mu(t) p(t) y
$$

To make this work, we need to find the correct $\mu$ so that $\mu(t) p(t)=\mu^{\prime}(t)$.

## Integrating factors

If we can find such a $\mu$, then our ODE can be written as

$$
\frac{d}{d t} \mu(t) y(t)=\mu(t) g(t)
$$

$\frac{d}{d t} \mu(t) y(t)=\mu(t) g(t)$
and, after integrating, we have

$$
y(t)=\frac{\int \mu(t) g(t) d t}{\mu(t)}
$$

## Integrating factors

So, we are now left with solving the auxillary ODE

$$
\mu^{\prime}(t)=\mu(t) p(t)
$$

We can solve this using integration:

$$
\begin{aligned}
\int \frac{\mu^{\prime}(t)}{\mu(t)} d t & =\int p(t) d t \\
\ln (\mu(t)) & =\int p(t) d t
\end{aligned}
$$

Simplifying,

$$
\mu(t)=e^{\int p(t) d t}
$$

## First Order Linear Equations

Solutions via integrating factors

Given an initial value problem

$$
\frac{d y}{d t}+p(t) y=g(t), y(0)=y_{0}
$$

The solution is

$$
y(t)=e^{-\int p(t) d t} \int e^{\int p(t) d t} g(t) d t
$$

where the constant of integration is determined by requiring $y(0)=y_{0}$.

## Separable equations

Another special class of ODEs:

$$
M(x)+N(y) \frac{d y}{d x}=0
$$

where $M, N$ are arbitrary functions of one variable. To solve this, we write this as

$$
M(x) d x=-N(y) d y
$$

Integrate both sides

and solve for $y$ (if possible).

## Separable equations

Another special class of ODEs:

$$
M(x)+N(y) \frac{d y}{d x}=0
$$

where $M, N$ are arbitrary functions of one variable. To solve this, we write this as

$$
M(x) d x=-N(y) d y
$$

Integrate both sides

$$
\int M(x) d x=-\int N(y) d y
$$

and solve for $y$ (if possible).

## Separable equations

## Example

## Example

$$
\frac{d y}{d x}+\sin (x) y^{2}=0, y(0)=1
$$

## Further examples

Solve the following ODE

$$
\begin{gathered}
\frac{d y}{d x}-\frac{x^{2}}{1+y^{2}}=0 \\
\frac{d y}{d x}-x-2 x e^{2 x}=0 \\
\frac{d y}{d x}-y-2 x e^{2 x}=0
\end{gathered}
$$

## Work for next class

- Reading: 2.4-2.6
- Homework 1 is due $4 / 2$

