Math 23, Spring 2007 Lecture 2

Scott Pauls 1

¹Department of Mathematics Dartmouth College

3/30/07

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

Outline

Last class

Today's material

First Order Linear Equations Separable equations

Group Work

Next class

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

Next class

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- Introduced ordinary differential equations
- ODEs often arise from modeling physical situations
- Goal: develop methods for finding or approximating solutions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

First tool: direction fields

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

Initial value problems

Definition

An initial value problem is a set of two equations, an ODE and an equation specifying a value of the unknown function at zero.

Example

$$\frac{df}{dt} = f(t)$$
$$f(0) = 2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Basic Questions:

- Does a solution exist?
- How many solutions are there?

Math 23, Spring 2007

Scott Pauls

Last class

Today's material

First Order Linear Equations Separable equations

Group Work

Initial value problems

Definition

An initial value problem is a set of two equations, an ODE and an equation specifying a value of the unknown function at zero.

Example

$$\frac{df}{dt} = f(t)$$
$$f(0) = 2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Basic Questions:

- Does a solution exist?
- How many solutions are there?

Math 23, Spring 2007

Scott Pauls

Last class

Today's material

First Order Linear Equations Separable equations

Group Work

Initial value problems

Definition

An initial value problem is a set of two equations, an ODE and an equation specifying a value of the unknown function at zero.

Example

$$\frac{df}{dt} = f(t)$$
$$f(0) = 2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Basic Questions:

- Does a solution exist?
- How many solutions are there?

Math 23, Spring 2007

Scott Pauls

Last class

Today's material

First Order Linear Equations Separable equations

Group Work

First order linear equations

Definition

A first order linear equation is an ODE of the form

$$\frac{dy}{dt} + p(t)y = g(t)$$

where p(t), g(t) are fixed functions of *t*.

How can we solve this equation? Our only method is integration, but we can't simply integrate because of the dependence on y.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

Vext class

First order linear equations

Definition

A first order linear equation is an ODE of the form

$$\frac{dy}{dt} + p(t)y = g(t)$$

where p(t), g(t) are fixed functions of t.

How can we solve this equation? Our only method is integration, but we can't simply integrate because of the dependence on y.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

Main idea: make the left hand side of the equation,

 $\frac{dy}{dt} + p(t)y$

look like the result of the product rule"

$$\frac{d}{dt}y(t)h(t) = \frac{dy}{dt}h(t) + \frac{dh}{dt}y$$

To do this, we multiply by a factor $\mu(t)$:

$$\mu(t)\frac{dy}{dt} + \mu(t)p(t)y$$

To make this work, we need to find the correct μ so that $\mu(t)p(t) = \mu'(t)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

_ast class

Today's material First Order Linear Equations Separable equations

Group Work

Main idea: make the left hand side of the equation,

 $\frac{dy}{dt} + p(t)y$

look like the result of the product rule"

$$\frac{d}{dt}y(t)h(t) = \frac{dy}{dt}h(t) + \frac{dh}{dt}y$$

To do this, we multiply by a factor $\mu(t)$:

$$\mu(t)\frac{dy}{dt} + \mu(t)\rho(t)y$$

To make this work, we need to find the correct μ so that $\mu(t)p(t) = \mu'(t)$.

Math 23, Spring 2007

Scott Pauls

_ast class

Today's material First Order Linear Equations Separable equations

Group Work

If we can find such a μ , then our ODE can be written as

$$\frac{d}{dt}\mu(t)y(t) = \mu(t)g(t)$$

and, after integrating, we have

$$y(t) = \frac{\int \mu(t)g(t) dt}{\mu(t)}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

So, we are now left with solving the auxillary ODE

 $\mu'(t) = \mu(t) p(t)$

We can solve this using integration:

$$\int \frac{\mu'(t)}{\mu(t)} dt = \int p(t) dt$$
$$\ln(\mu(t)) = \int p(t) dt$$

Simplifying,

$$\mu(t) = e^{\int p(t) dt}$$

Math 23, Spring 2007

Scott Pauls

_ast class

Today's material First Order Linear Equations Separable equations

Group Work

Next class

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

First Order Linear Equations

Solutions via integrating factors

Given an initial value problem

$$rac{dy}{dt}+p(t)y=g(t),\;y(0)=y_0$$

The solution is

$$y(t) = e^{-\int p(t) dt} \int e^{\int p(t) dt} g(t) dt$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

where the constant of integration is determined by requiring $y(0) = y_0$.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

Separable equations

Another special class of ODEs:

$$M(x) + N(y)\frac{dy}{dx} = 0$$

where M, N are arbitrary functions of one variable. To solve this, we write this as

$$M(x) dx = -N(y) dy$$

Integrate both sides

$$\int M(x) \, dx = -\int N(y) \, dy$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

and solve for *y* (if possible).

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

Vext class

Separable equations

Another special class of ODEs:

$$M(x) + N(y)\frac{dy}{dx} = 0$$

where M, N are arbitrary functions of one variable. To solve this, we write this as

$$M(x) dx = -N(y) dy$$

Integrate both sides

$$\int M(x) \ dx = -\int N(y) \ dy$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

and solve for y (if possible).

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

Vext class

Separable equations

Example

Example

$$\frac{dy}{dx} + \sin(x)y^2 = 0, \ y(0) = 1$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's materia First Order Linear Equations Separable equations

Group Work

Further examples

Solve the following ODE

$$\frac{dy}{dx} - \frac{x^2}{1+y^2} = 0$$

$$\frac{dy}{dx} - x - 2xe^{2x} = 0$$

$$\frac{dy}{dx} - y - 2xe^{2x} = 0$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

Work for next class

- Reading: 2.4-2.6
- Homework 1 is due 4/2

Math 23, Spring 2007

Scott Pauls

Last class

Today's material First Order Linear Equations Separable equations

Group Work

Next class

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●