Math 23, Spring 2007

Lecture 17

Scott Pauls

Department of Mathematics
Dartmouth College

$$
5 / 4 / 07
$$

Material from last class

- First order systems of equations
- Linear algebra review
- Eigenvalues and Eigenvectors

Linear first order systems

Math 23, Spring 2007

Scott Pauls

$$
\begin{aligned}
& x_{1}^{\prime}=p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{n}+g_{1}(t) \\
& x_{2}^{\prime}=p_{21}(t) x_{1}+\cdots+p_{2 n}(t) x_{n}+g_{2}(t)
\end{aligned}
$$

$$
\vdots
$$

$$
x_{1}^{\prime}=p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n}+g_{n}(t)
$$

Rewrite this in matrix form:

$$
\vec{x}^{\prime}=P(t) \vec{x}+\vec{g}(t)
$$

The system is homogeneous if \vec{g} is the zero vector. We will write a solution to this system as

Linear first order systems

$$
\begin{aligned}
& x_{1}^{\prime}=p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{n}+g_{1}(t) \\
& x_{2}^{\prime}=p_{21}(t) x_{1}+\cdots+p_{2 n}(t) x_{n}+g_{2}(t) \\
& \vdots \\
& x_{1}^{\prime}=p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n}+g_{n}(t)
\end{aligned}
$$

Rewrite this in matrix form:

$$
\vec{x}^{\prime}=P(t) \vec{x}+\vec{g}(t)
$$

The system is homogeneous if \vec{g} is the zero vector. We will write a solution to this system as

$$
\vec{x}=\vec{\phi}(t)=\left(\begin{array}{c}
\phi_{1}(t) \\
\vdots \\
\phi_{n}(t)
\end{array}\right)
$$

Linear first order systems

Principle of superposition

Theorem
If phi(t) and $\vec{\psi}(t)$ are solutions to a homogeneous linear first order system, then any linear combination is also a solution.

Theorem
A set of solutions to a first order linear system,
$\left\{\phi_{1}(t), \ldots, \phi_{n}(t)\right\}$ are linearly independent at t if

Last class
Today's material
Solution for linear first order systems
Finding solutions
Next class

Linear first order systems

Principle of superposition

Theorem

If phi(t) and $\vec{\psi}(t)$ are solutions to a homogeneous linear first order system, then any linear combination is also a solution.

Theorem

A set of solutions to a first order linear system, $\left\{\vec{\phi}_{1}(t), \ldots, \vec{\phi}_{n}(t)\right\}$ are linearly independent at t if

$$
W\left(\vec{\phi}_{1}(t), \ldots, \vec{\phi}_{n}(t)\right)=\operatorname{det}\left(\begin{array}{ccc}
\phi_{11}(t) & \ldots & \phi_{1 n}(t) \\
\vdots & \vdots & \vdots \\
\phi_{n 1}(t) & \ldots & \phi_{n n}(t)
\end{array}\right) \neq 0
$$

Linear homogeneous first order systems

Theorem
If $\left\{\vec{\phi}_{1}(t), \ldots, \vec{\phi}_{n}(t)\right\}$ are linearly independent solutions to a linear first order homogeneous system for $\alpha<t<\beta$, then every solution to the system may be uniquely written as a linear combination of the $\vec{\phi}_{i}$.

Theorem

If $\left\{\vec{\phi}_{1}(t), \ldots, \vec{\phi}_{n}(t)\right\}$ are solutions to a linear first order homogeneous system on the interval $\alpha<t<\beta$ then $W\left(\vec{\phi}_{1}(t), \ldots, \vec{\phi}_{n}(t)\right)$ is either identically zero on this interval or it never vanishes.

Methods for finding solutions

Phase planes and phase portraits

$$
\vec{x}^{\prime}=A \vec{x}
$$

where A is an $n \times n$ matrix.

Cases:

$\mathrm{n}=1$: this is a single linear first order equation $x^{\prime}=a x$. Methods of solution: Direction fields, integrating factors $\mathrm{n}=2$: this is a pair of linear equations

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=c x+d y
\end{aligned}
$$

Draw phase plane/portrait. Use pplane7.m.

Methods for finding solutions

Phase planes and phase portraits

$$
\vec{x}^{\prime}=A \vec{x}
$$

where A is an $n \times n$ matrix.

Cases:

$\mathrm{n}=1$: this is a single linear first order equation $x^{\prime}=a x$. Methods of solution: Direction fields, integrating factors $\mathrm{n}=2$: this is a pair of linear equations

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=c x+d y
\end{aligned}
$$

Draw phase plane/portrait. Use pplane7.m.

Methods for finding solutions

$$
\vec{x}^{\prime}=A \vec{x}
$$

Idea: mimic solutions for second order equations, guess

$$
\vec{x}=\vec{\xi} e^{r t}
$$

Plug into the equation:

Divide through by $e^{r t}$ and rewrite as

$$
(A-r) \vec{\xi}=0
$$

Conclusion: solutions of this form are determined by the eigenvalues and eigenvectors of A.

Methods for finding solutions

$$
\vec{x}^{\prime}=A \vec{x}
$$

Idea: mimic solutions for second order equations, guess

$$
\vec{x}=\vec{\xi} e^{r t}
$$

Plug into the equation:

$$
r \vec{\xi} e^{r t}=A \vec{\xi} e^{r t}
$$

Divide through by $e^{r t}$ and rewrite as

$$
(A-r l) \vec{\xi}=0
$$

Conclusion: solutions of this form are determined by the eigenvalues and eigenvectors of A.

Methods for finding solutions

$$
\vec{x}^{\prime}=A \vec{x}
$$

Idea: mimic solutions for second order equations, guess

$$
\vec{x}=\vec{\xi} e^{r t}
$$

Plug into the equation:

$$
r \vec{\xi} e^{r t}=A \vec{\xi} e^{r t}
$$

Divide through by $e^{r t}$ and rewrite as

$$
(A-r l) \vec{\xi}=0
$$

Conclusion: solutions of this form are determined by the eigenvalues and eigenvectors of A.

Example

Math 23, Spring 2007

Scott Pauls

Last class
Today's material
Solution for linear first order systems
Finding solutions
Next class

$$
\vec{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \vec{x}
$$

Work for next class

- Read 7.6
- Homework 6 is due Monday 5/7/07

