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Material from last class
I Constant coeffecient equations

ay ′′ + by ′ + cy = 0

Three cases:
1. b2 − 4ac > 0: distinct real roots

Fundamental set of solutions:

y1(t) = er1t , y2(t) = er2t

2. b2 − 4ac = 0: double real root
Fundamental set of solutions:

y1(t) = er1t , y2(t) = ter1t

3. b2 − 4ac < 0: complex roots
Fundamental set of solutions:

y1(t) = eαt cos(βt) y2(t) = eαt sin(βt)

I Reduction of order
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Inhomogeneous equations
So far, we have focused on homogeneous equations

y ′′ + p(t)y ′ + q(t)y = 0 (1)

We now turn to inhomogeneous equations

y ′′ + p(t)y ′ + q(t)y = g(t) (2)

Observations:
I If we can find a single solution yp(t) to (2) then we

can add on the general solution to (1) to create a two
parameter family of solutions:

yp(t) + C1y1(t) + C2y2(t)

I The set {yp(t) + C1y1(t), yp(t) + C2y2(t)} is a
fundamental set of solutions if {yp, y1, y2} are
pairwise linearly independent.

I Main goal: find a particular solution
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Method of undetermined coefficients

ay ′′ + by ′ + cy = g(t)

Basic idea: Guess the most general solution that looks
like g(t)
Examples:

I If g is a polynomial, guess that is a polynomial with
unspecified coefficients

I If g is an exponential, guess a similar exponential
I if g contains trigonometric functions, guess a similar

combination of trigonmetric functions
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Examples

2y ′′ + 3y ′ + y = t2

Guess: ts(a0 + a1t + a2t2)

y ′′ − 2y ′ − 3y = −3te−t

Guess: Atke−t
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Variation of parameters

Given a linear inhomogeneous equation

y ′′ + p(t)y ′ + q(t)y = g(t)

suppose we have the general solution c1y1(t) + c2y2(t) to
the homogeneous version of this equation. The main idea
is similar to reduction of order: replace the constants with
functions of t . i.e. look for solutions of the form

u1(t)y1(t) + u2(t)y2(t)

Example:
y ′′ − 2y ′ − 3y = −3te−t

Fundamental set of soutions to homogeneous equation:
{e3t , e−t}
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Variation of parameters

Theorem
If the functions p, q and g are continuous on an open
interval I, and if the functions y1 and y2 are linearly
independent solutions of the homogeneous equation

y ′′ + p(t)y ′ + q(t)y = 0 (3)

associated to the inhomogeneous equation

y ′′ + p(t)y ′ + q(t)y = g(t) (4)

then a particular solution of (4) is

yp(t) = −y1(t)
∫ t

t0

y2(s)g(s)

W (y1, y2, s)
ds+y2(s)

∫ t

t0

y1(s)g(s)

W (y1, y2, s)
ds

where t0 is any point in I.
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Work for next class

I Reading: 3.8, 3.9
I Homework 4 is due monday 4/23
I Midterm exam: Next tuesday. Covers through today’s

class (section 3.7)
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