Math 23, Spring 2007

Scott Pauls

Last class

Today's material

nhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Vext class

Math 23, Spring 2007 Lecture 10

Scott Pauls 1

¹Department of Mathematics Dartmouth College

4/18/07

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Last class

Today's material

Inhomogeneous equations Particular solutions Method of undetermined coefficients Variation of parameters

Next class

Math 23, Spring 2007

Scott Pauls

Last class

Today's material

nhomogeneous equations Method of undetermined coefficients Particular solutions /ariation of parameters

lext class

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Material from last class

Constant coeffecient equations

$$ay'' + by' + cy = 0$$

Three cases:

1. $b^2 - 4ac > 0$: distinct real roots Fundamental set of solutions:

$$y_1(t) = e^{r_1 t}, y_2(t) = e^{r_2 t}$$

2. $b^2 - 4ac = 0$: double real root Fundamental set of solutions:

$$y_1(t) = e^{r_1 t}, y_2(t) = t e^{r_1 t}$$

3. $b^2 - 4ac < 0$: complex roots Fundamental set of solutions:

$$y_1(t) = e^{\alpha t} \cos(\beta t) \ y_2(t) = e^{\alpha t} \sin(\beta t)$$

Reduction of order

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Next class

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Inhomogeneous equations So far, we have focused on homogeneous equations

$$y'' + p(t)y' + q(t)y = 0$$

We now turn to inhomogeneous equations

$$y'' + p(t)y' + q(t)y = g(t)$$

Observations:

If we can find a single solution y_p(t) to (2) then we can add on the general solution to (1) to create a two parameter family of solutions:

 $y_p(t) + C_1 y_1(t) + C_2 y_2(t)$

- ► The set {y_p(t) + C₁y₁(t), y_p(t) + C₂y₂(t)} is a fundamental set of solutions if {y_p, y₁, y₂} are pairwise linearly independent.
- Main goal: find a particular solution

Math 23, Spring 2007

Scott Pauls

Last class

(1)

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Inhomogeneous equations

So far, we have focused on homogeneous equations

$$y'' + p(t)y' + q(t)y = 0$$

We now turn to inhomogeneous equations

$$\mathbf{y}'' + \mathbf{p}(t)\mathbf{y}' + \mathbf{q}(t)\mathbf{y} = \mathbf{g}(t)$$

Observations:

If we can find a single solution y_p(t) to (2) then we can add on the general solution to (1) to create a two parameter family of solutions:

$$y_{\rho}(t) + C_1 y_1(t) + C_2 y_2(t)$$

- ► The set {y_p(t) + C₁y₁(t), y_p(t) + C₂y₂(t)} is a fundamental set of solutions if {y_p, y₁, y₂} are pairwise linearly independent.
- Main goal: find a particular solution

Math 23, Spring 2007

Scott Pauls

Last class

(1)

(2)

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Method of undetermined coefficients

$$ay''+by'+cy=g(t)$$

Basic idea: Guess the most general solution that looks like g(t)

Examples:

- If g is a polynomial, guess that is a polynomial with unspecified coefficients
- ▶ If g is an exponential, guess a similar exponential
- ▶ if g contains trigonometric functions, guess a similar combination of trigonmetric functions

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Method of undetermined coefficients

$$ay''+by'+cy=g(t)$$

Basic idea: Guess the most general solution that looks like g(t)Examples:

- If g is a polynomial, guess that is a polynomial with unspecified coefficients
- ► If g is an exponential, guess a similar exponential
- if g contains trigonometric functions, guess a similar combination of trigonmetric functions

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Vext class

$$2y'' + 3y' + y = t^2$$

Guess: $t^{s}(a_{0} + a_{1}t + a_{2}t^{2})$

$$y'' - 2y' - 3y = -3te^{-t}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Guess: At^ke^{-t}

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Vext class

$$2y'' + 3y' + y = t^2$$

Guess: $t^s(a_0 + a_1t + a_2t^2)$

$$y'' - 2y' - 3y = -3te^{-t}$$

<□▶ <□▶ < 三▶ < 三▶ < 三▶ = ○ ○ ○ ○

Guess: *At^ke^{-t}*

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

lext class

$$2y'' + 3y' + y = t^2$$

Guess: $t^s(a_0 + a_1t + a_2t^2)$

$$y'' - 2y' - 3y = -3te^{-t}$$

<□▶ <□▶ < 三▶ < 三▶ < 三▶ = ○ ○ ○ ○

Guess: At^ke^{-t}

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Vext class

$$2y'' + 3y' + y = t^2$$

Guess: $t^s(a_0 + a_1t + a_2t^2)$

$$y'' - 2y' - 3y = -3te^{-t}$$

<□▶ <□▶ < 三▶ < 三▶ < 三▶ = ○ ○ ○ ○

Guess: $At^k e^{-t}$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

lext class

$$2y'' + 3y' + y = t^2$$

Guess: $t^s(a_0 + a_1t + a_2t^2)$

$$y'' - 2y' - 3y = -3te^{-t}$$

<□▶ <□▶ < 三▶ < 三▶ < 三▶ = ○ ○ ○ ○

Guess: $At^k e^{-t}$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

lext class

Variation of parameters

Given a linear inhomogeneous equation

$$y'' + p(t)y' + q(t)y = g(t)$$

suppose we have the general solution $c_1y_1(t) + c_2y_2(t)$ to the *homogeneous* version of this equation. The main idea is similar to reduction of order: replace the constants with functions of *t*. i.e. look for solutions of the form

 $u_1(t)y_1(t) + u_2(t)y_2(t)$

Example:

$$y'' - 2y' - 3y = -3te^{-t}$$

Fundamental set of soutions to homogeneous equation: $\{e^{3t}, e^{-t}\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Variation of parameters

Given a linear inhomogeneous equation

$$y'' + p(t)y' + q(t)y = g(t)$$

suppose we have the general solution $c_1y_1(t) + c_2y_2(t)$ to the *homogeneous* version of this equation. The main idea is similar to reduction of order: replace the constants with functions of *t*. i.e. look for solutions of the form

 $u_1(t)y_1(t) + u_2(t)y_2(t)$

Example:

$$y'' - 2y' - 3y = -3te^{-t}$$

Fundamental set of soutions to homogeneous equation: $\{e^{3t}, e^{-t}\}$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Variation of parameters

Theorem

If the functions p, q and g are continuous on an open interval I, and if the functions y_1 and y_2 are linearly independent solutions of the homogeneous equation

$$y'' + p(t)y' + q(t)y = 0$$
 (3)

associated to the inhomogeneous equation

$$y'' + p(t)y' + q(t)y = g(t)$$
 (4)

then a particular solution of (4) is

$$y_{
ho}(t) = -y_1(t) \int_{t_0}^t rac{y_2(s)g(s)}{W(y_1,y_2,s)} \ ds + y_2(s) \int_{t_0}^t rac{y_1(s)g(s)}{W(y_1,y_2,s)} \ ds$$

where t₀ is any point in I.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters

Next class

・ロト・西ト・ヨト ・ヨー シタの

Work for next class

- Reading: 3.8, 3.9
- Homework 4 is due monday 4/23
- Midterm exam: Next tuesday. Covers through today's class (section 3.7)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Inhomogeneous equations Method of undetermined coefficients Particular solutions Variation of parameters