
MATH 23 Exam 2 Review Solutions

Problem 1. Use the method of reduction of order to find a second solution
of the given differential equation

x2y′′ − (x− 0.1875)y = 0, x > 0, y1(x) = x1/4e2
√
x

Solution 1. Set y2(x) = y1(x)v(x), in which y1(x) = x1/4e2x. It can be
verified that y1 is a solution of the differential equation, that is,

x2y′′ − (x− 0.1875)y = 0.

Substitution of the given form of y2 results in the differential equation

2x9/4v′′ + (4x7/4 + x5/4)v′ = 0.

This equation is linear in the variable w = v′. An integrating factor is

µ = e
∫
[2x−1/2+1/(2x)]dx =

√
xe4
√
x.

Rewrite the equation as [
√
xe4
√
xv′]′ = 0, from which it follows that v′(x) =

ce−4
√
x/
√
x. Integrating, v(x) = c1e

−4
√
x + c2 and as a result,

y2(x) = c1x
1/4e−2

√
x + c2x

1/4e2
√
x.

Setting c1 = 1 and c2 = 0,we obtain

y2(x) = x1/4e−2
√
x.

Problem 2. Consider the initial value problem

4y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 2.

(a) Solve the initial value problem and plot the solution.
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(b) Determine the coordinates (tM , yM) of the maximum point.

(c) Change the second initial condition to y′(0) = b > 0 and find the solution
as a function of b.

(d) Find the coordinates (tM , yM) of the maximum point in terms of b. De-
scribe the dependence of tM and yM on b as b increases.

Solution 2. (a) The characteristic equation is

4r2 + 4r + 1 = 0,

which is equivalent to
(2r + 1)2 = 0.

The roots of the characteristic equation are

r = −1/2,−1/2.

So the solution is y(t) = (c1 + c2t)e
−t/2.

Using the initial conditions, we get c1 = 1 and c2 = 5/2. The solution
becomes

y(t) = (1 +
5

2
)e−t/2.

(b) To determine the maximum point,

y′(t) = 0 =⇒ e−t/2
(
5

2
− 5

4
t− 1

2

)
= 0

which gives t = 8
5
. Substituting this value of t into the solution, we get

yM = 5e−4/5.

So, the maximum point (tM , yM) = (8
5
, 5e−4/5).

(c) By changing the second initial condition from y′(0) = 2 to y′(0) = b and
keeping the first initial condition (i.e., y(0) = 1) same, we get c1 = 1
and c2 = b+ 1/2 and the solution becomes

y(t) = (1 + (b+ 1/2)t)e−t/2.
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(d) To find the maximum point in terms of b, we differentiate the the solution
obtained in part (c),

e−t/2(−1

2
+ (b+ 1/2)− 1

2
(b+ 1/2)t) = 0,

which gives

tM =
4b

2b+ 1
.

Note that tM →∞ as b→∞.
Substituting the value of tM into the solution gives

yM = (1 + 2b)exp(− 2b

1 + 2b
).

Again, note that yM →∞ as t→∞.

Problem 3. Solve the given initial value problem. Sketch the graph of the
solution and describe its behaviour for increasing t.

9y′′ + 6y′ + 82y = 0, y(0) = −1, y′(0) = 2

Solution 3. The characteristic equation is

9r2 + 6r + 82 = 0.

We obtain the complex roots r = −1/3± 3i. The general solution is

y(t) = c1e
−t/3 cos 3t+ c2e

−t/3 sin 3t.

Based on the first initial condition, c1 = −1. Invoking the second initial
condition, we conclude that 1/3 + 3c2 = 2, or c2 = 5/9. Hence

y(t) = −e−t/3 cos 3t+ (5/9)e−t/3 sin 3t.

The solution oscillates with an exponentially decreasing amplitude.

Problem 4. Find the general solution of the given differential equation

u′′ + ω2
0u = cosωt, ω2 6= ω2

0

3



Solution 4. The characteristic equation for the homogeneous problem is

r2 + ω2
0 = 0,

with complex roots r = ±ω0i. Hence

yc(t) = c1 cosω0t+ c2 sinω0t.

Since ω 6= ω0, set
Y = A cosωt+B sinωt.

Substitution into the ODE and comparing the coefficients results in the system
of equations (ω2

0 − ω2)A = 1 and (ω2
0 − ω2)B = 0. Hence

Y =
1

ω2
0 − ω2

cosωt.

The general solution is y(t) = yc(t) + Y.

Problem 5. Determine a suitable form of particular solution Y (t) using the
method of undetermined coefficients

y′′ + 3y′ + 2y = et(t2 + 1) sin 2t+ 3e−t cos t+ 4et

Solution 5. (a) The homogeneous solution is

yc(t) = c1e
−t + c2te

−2t.

None of the functions on the right hand side are solutions of the ho-
mogenous equation. In order to include all possible combinations of the
derivatives, consider

Y (t) = et(A0+A1t+A2t
2) cos 2t+et(B0+B1t+B2t

2) sin 2t++e−t(C1 cos t+C2 sin t)+De
t.

(b) Substitution into the differential equation and comparing the coefficients
results in

Y (t) = et(A0+A1t+A2t
2) cos 2t+et(B0+B1t+B2t

2) sin 2t+e−t(−3

2
cos t+

3

2
sin t)+2et/3,

in which A0 = −4105/35152, A1 = 73/676, A2 = −5/52, B0 = −1233/35152, B1 =
10/169, B2 = 1/52.
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Problem 6. Verify that the given functions y1 and y2 satisfy the correspond-
ing homogenous equation; then find a particular solution of the given nonho-
mogeneous equation.

x2y′′ − 3xy′ + 4y = x2 lnx, x > 0, y1(x) = x2, y2(x) = x2 lnx

Solution 6. Note that g(x) = ln x. The functions y1(x) = x2 and y2(x) =
x2 lnx are solutions of the homogeneous equation, as verified by substitution.
The Wronskian of the solutions is W (y1, y2) = x3. Using the method of varia-
tion of parameters, the particular solution is Y (x) = u1(x)y1(x)+u2(x)y2(x),
in which

u1(x) = −
∫
x2 lnx(lnx)

W (x)
dx = −(lnx)3/3

u2(x) = −
∫
x2 lnx

W (x)
dx = −(lnx)2/2.

Therefore Y (x) = −x2(lnx)3/3 + x2(lnx)3/2 = x2(lnx)3/6.

Problem 7. Verify that the given functions y1 and y2 satisfy the correspond-
ing homogenous equation; then find a particular solution of the given nonho-
mogeneous equation.

x2y′′+xy′+(x2−0.25)y = g(x), x > 0; y1(x) = x−1/2 sinx, y2(x) = x−1/2 cosx

Solution 7. First write the equation in standard form. The forcing function
becomes g(x)/x2. The functions y1(x) = x−1/2 sinx and y2(x) = x−1/2 cosx
are a fundamental set of solutions. The Wronskian of the solutions is

W (y1, y2) = −1/x.

Using the method of variation of parameters, the particular solution is Y (x) =
u1(x)y1(x) + u2(x)y2(x), in which

u1(x) =

∫ x

x0

cos τ(g(τ))

τ
√
τ

dτ ,

u2(x) = −
∫ x

x0

sin τ(g(τ))

τ
√
τ

dτ .
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Therefore

Y (x) =
sinx√
x

∫ x

x0

cos τ(g(τ))

τ
√
τ

dτ − cosx√
x

∫ x

x0

sin τ(g(τ))

τ
√
τ

dτ

=
1√
x

∫ x

x0

sin(x− τ)(g(τ))
τ
√
τ

dτ.

Problem 8. A mass weighing 3 lb stretches a spring 3 in. If the mass is
pushed upward, contracting the spring a distance of 1 in, and then set in
motion with a downward velocity of 2 ft/s, and if there is no damping, find
the position u of the mass at any time t. Determine the frequency, period,
amplitude, and phase of the motion.

Solution 8. The spring constant is k = 3
(1/4)

= 12 lb/ft. Mass m = 3/32

lb-s2 /ft. Since there is no damping, the equation of motion is

3u′′/32 + 12u = 0,

that is, u′′+128u = 0. The initial conditions are u(0) = −1/12 ft , u′(0) = 2
ft/s. The general solution is

u(t) = A cos(8
√
2t) +B sin(8

√
2t).

Invoking the initial conditions, we have

u(t) = − 1

12
cos(8

√
2t) +

1

4
√
2
sin(8

√
2t).

R =
√
11/288ft, δ = π − arctan(3/

√
2)rad, ω0 = 8

√
2 rad/s, T = π/(4

√
2)s.

Problem 9. A 1/4-kg mass is attached to a spring with a stiffness 4 N/m.
The damping constant b for the system is 1 N-sec/m. If the mass is displaced
1/2 m to the left and an initial velocity of 1 m/sec to the left, find the equation
of motion. What is the maximum displacement that the mass will attain?

Solution 9. The general equation is

my′′ + by′ + ky = 0 (1)

Substituting m = 1/4, b = 1, k = 4 into Eq (1), we get

(1/4)y′′ + y′ + 4y = 0
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with initial conditions

y(0) = −1/2, y′(0) = −1.

The negative signs for the initial conditions reflect the facts that the initial
displacement and push are to the left. The solution to (1) is given by

y(t) = −1

2
e−2t cos(2

√
3t)− 1√

3
e−2t sin(2

√
3t)

or, it can be expressed as

y(t) =

√
7

12
e−2t sin(2

√
3t+ φ),

where φ =
√
3/2 and φ lies in Quadrant III because c1 = −1/2 and c2 =

−1/
√
3 are both negative.

To determine the maximum displacement from equilibrium, we must deter-
mine the maximum value of |y(t)|.

y′(t) = e−2t{ 5√
3
sin(2

√
3t)− cos(2

√
3t)} = 0,

5√
3
sin(2

√
3t) = cos(2

√
3t),

tan(2
√
3t) =

√
3

5
.

Thus, the first positive root is

t =
1

2
√
3
arctan

√
3

5
≈ 0.096.

Substituting this value for t back into the solution y(t) gives y(0.096) ≈ −0.55.
Hence the maximum displacement, which occurs to the left of equilibrium, is
approximately 0.55m.

Problem 10. Verify that the given vector satisfies the given differential equa-
tion

x′ =

1 1 1
2 1 −1
0 −1 1

x, x =

 6
−8
−4

 e−t + 2

 0
1
−1

 e−2t
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Solution 10. It is easy to see that

x′ =

−68
4

 e−t +
 0

4
−4

 e2t = [ −6e−t
8e−t + 4e2t 4e−t − 4e−2t

]
On the other hand,1 1 1

2 1 −1
0 −1 1

x =

1 1 1
2 1 −1
0 −1 1

−68
4

 e−t +
1 1 1
2 1 −1
0 −1 1

 0
2
−2

 e2t
=

−68
4

 e−t +
 0

4
−4

 e2t
Problem 11. Verify that the given matrix satisfies the given differential
equation

ψ′ =

1 −1 4
3 2 −1
2 1 1

ψ, ψ(t) =

 et e−2t e3t

−4et −e−2t 2e3t

−et −e−2t e3t


Solution 11. Differentiation, elementwise, results in

ψ′ =

 et −2e−2t 3e3t

−4et 2e−2t 6e3t

−et 2e−2t 3e3t


On the other hand,1 −1 4

3 2 −1
2 1 1

ψ =

1 −1 4
3 2 −1
2 1 1

 et e−2t e3t

−4et −e−2t 2e3t

−et −e−2t e3t


=

 et −2e−2t 3e3t

−4et 2e−2t 6e3t

−et 2e−2t 3e3t

 .
Problem 12. Verify that the given functions are solutions of the differential
equation, and determine the Wronskian

xy′′′ − y′′ = 0; 1, x, x3
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Solution 12. Substitution verifies that the functions are solutions of the
differential equation. Furthermore, we have W (1, x, x3) = 6x.

Problem 13. Determine intervals in which solutions are sure to exist

(x− 1)y(4) + (x+ 1)y′′ + (tanx)y = 0

Solution 13. Writing the equation in standard form, the coefficients are ra-
tional functions with a singularity at x0 = 1. Furthermore, p4(x) = tan x/(x−
1) is undefined, and hence not continuous, at xk = ±(2k + 1)π/2, k =
0, 1, 2, . . . Hence solutions are defined on any interval that does not contain
x0 or xk.

Problem 14. Find the general solution of the given differential equation

y(6) − y′′ = 0

Solution 14. The characteristic equation can be written as

r2(r4 − 1) = 0.

The roots are given by
r = 0, 0,±1,±i.

The general solution is

y = c1 + c2t+ c3e
−t + c4e

t + c5 cos t+ c6 sin t.

Problem 15. Find the general solution of the given differential equation

y(8) + 8y(4) + 16y = 0

Solution 15. The characteristic equation can be written as

(r4 + 4)2 = 0.

The roots of the equation r4 + 4 = 0 are

r = 1± i,−1± i.

Each of these roots has multiplicity two. The general solution is

y = et[c1 cos t+c2 sin t]+te
t[c3 cos t+c4 sin t]+e

−t[c5 cos t+c6 sin t]+te
−t[c7 cos t+c8 sin t].
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Problem 16. Determine a suitable form for the particular solution (Y (t))
if the method of undetermined coefficients is to be used. Do not evaluate the
constants.

y(4) + 2y′′′ + 2y′′ = 3et + 2te−t + e−t sin t

Solution 16. The characteristic equation can be written as

r2(r2 + 2r + 2) = 0,

with roots r = 0, with multiplicity two, and r = −1± i. This means that the
homogeneous solution is

yc = c1 + c2t+ c3e
−t cos t+ c4e

−t sin t.

The function g1(t) = 3et + 2te−t, and all of its derivatives, is independent of
the homogeneous solution. Therefore set

Y1(t) = Aet + (Bt+ C)e−t.

Now g2(t) = e−t sin t is a solution of the homogeneous equation, associated
with the complex roots. We need to set

Y2(t) = t(De−t cos t+ Ee−t sin t).

It follows that the particular solution has the form

Y (t) = Aet + (Bt+ C)e−t + t(De−t cos t+ Ee−t sin t).

Problem 17. Find the solution of the initial value problem

y′′′ − 3y′′ + 2y′ = t+ et; y(0) = 1, y′(0) = −1/4, y′′(0) = −3/2

Solution 17. The characteristic equation can be written as

r(r2 − 3r + 2) = 0.

Hence the homogeneous solution is

yc = c1 + c2e
t + c3e

2t.

Let g1(t) = et and g2(t) = t. Note that g1 is a solution of the homogeneous
problem. Set

Y1(t) = Atet.
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Substitution into the ODE results in A = −1. Now let

Y2(t) = Bt2 + Ct.

Substitution into the ODE results in B = 1/4 and C = 3/4. Therefore the
general solution is

y(t) = c1 + c2e
t + c3e

2t − tet + (t2 + 3t)/4.

Invoking the initial conditions, we find that c1 = 1, c2 = c3 = 0. The solution
of the initial value problem is

y(t) = 1− tet + (t2 + 3t)/4.

Problem 18. Given that x, x2, and 1/x are solutions of the homogeneous
equation corresponding to

x3y′′′ + x2y′′ − 2xy′ + 2y = 2x4, x > 0,

determine a particular solution.

Solution 18. First write the equation as

y′′′ + x−1y′′ − 2x−2y′ + 2x−3y = 2x.

The Wronskian is evaluated as

W (x, x2, 1/x) = 6/x.

Now compute the three determinants

W1(x) =

∣∣∣∣∣∣
0 x2 1/x
0 2x −1/x2
1 2 2/x3

∣∣∣∣∣∣ = −3,
W2(x) =

∣∣∣∣∣∣
x 0 1/x
1 0 −1/x2
0 1 2/x3

∣∣∣∣∣∣ = 2/x,

W3(x) =

∣∣∣∣∣∣
x x2 0
1 2x 0
0 2 1

∣∣∣∣∣∣ = x2.

Hence u1(x) = −x3/3, u2(x) = x2/3, u3(x) = x5/15. Therefore the particular
solution can be expressed as

Y (x) = x[−x3/3] + x2[x2/3] +
1

x
[x5/15] = x4/15.
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Problem 19. Find the solution of the given initial value problem

y′′′ + y′ = sec t; y(0) = 2, y′(0) = 1, y′′(0) = −2

Solution 19. The characteristic equation is

r(r2 − 1) = 0

and the roots are r = 0,±i. The complementary solution is given by

yc(t) = c1 + c2 cos t+ c3 sin t.

The Wronskian W (1, cos t, sin t) = 1 and

W1 = 1,W2 = − cos t,W3 = − sin t

This gives

u1(t) =

∫
W1 sec t

W
dt = ln | sec t+ tan t|

u2(t) =

∫
W2 sec t

W
dt = −t

u3(t) =

∫
W3 sec t

W
dt = ln | sec t|

The particular solution is given by

Y (t) = u1(t) + u2(t) cos t+ u3(t) sin t,

and using u1, u2 and u3, the solution becomes

Y (t) = ln | sec t+ tan t| − t cos t+ ln | sec t| sin t.

Problem 20. Find all eigenvalues and eigenvectors of the given matrix[
1 i
−i 1

]
Solution 20. The characteristic equation is given by

(1− λ)2 − 1 = 0
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which gives λ = 0, 2. For λ1 = 0[
1 i
−i 1

]
∼
[
−i 1
0 0

]
which gives −ix1 + x2 = 0. So, the eigenvector is

x(1) =

[
1
i

]
.

For λ1 = 2 [
−1 i
−i −1

]
∼
[
−i −1
0 0

]
which gives −ix1 − x2 = 0. So, the eigenvector is

x(2) =

[
1
−i

]
.

Problem 21. Find all eigenvalues and eigenvectors of the given matrix11/9 −2/9 8/9
−2/9 2/9 10/9
8/9 10/9 5/9


Solution 21. For computational purposes, note that if λ is an eigenvalue
of B, then cλ is an eigenvalue of the matrix A = cB. Eigenvectors are
unaffected, since they are only determined up to a scalar multiple. So with

the associated characteristic equation is

µ3 − 18µ2 − 81µ+ 1458 = 0,

with roots µ1 = −9, µ2 = 9 and µ3 = 18. Hence the eigenvalues of the given
matrix, A, are λ1 = −1, λ2 = 1 and λ3 = 2. Setting λ = λ1 = −1, (which
corresponds to using µ1 = −9 in the modified problem) the reduced system of
equations is

2x1 + x3 = 0,

x2 + x3 = 0.
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A corresponding solution vector is given by x(1) = (1, 2,−2)T . Setting λ =
λ2 = 1, the reduced system of equations is

x1 + 2x3 = 0,

x2 − 2x3 = 0.

A corresponding solution vector is given by x(2) = (2,−2,−1)T . Finally, set-
ting λ = λ2 = 1, the reduced system of equations is

x1 − x3 = 0,

2x2 − x3 = 0.

A corresponding solution vector is given by x(3) = (2, 1, 2)T .
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