Math 23 Diff Eq: Review of 2-by-2 matrices

Alex Barnett, October 15, 2007

You will need to know or pick up these basics for this course (we postpone eigenvalues and eigenvectors until later).

A pair of simultaneous linear equations for two unknowns x_1, x_2 can generally be written

$$\begin{array}{l} ax_1 + bx_2 &= y_1 \\ cx_1 + dx_2 &= y_2 \end{array}$$
 (1)

The linear algebra way to write the same is

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\left[\begin{array}{c}x_1\\x_2\end{array}\right] = \left[\begin{array}{c}y_1\\y_2\end{array}\right]$$

which can be summarized by

$$M\mathbf{x} = \mathbf{y} \tag{2}$$

where M is an order-2 square matrix and \mathbf{x} and \mathbf{y} are column vectors. Make sure you understand how the matrix 'hits' the \mathbf{x} vector to give the LHS terms in Eq. (1): the product $M\mathbf{x}$ means literally build a vector linear combination given by x_1 amount of the first column of M plus x_2 amount of the second column.

Matrices multiply as follows:

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\left[\begin{array}{cc}w&x\\y&z\end{array}\right] = \left[\begin{array}{cc}aw+by&ax+bz\\cw+dy&cx+dz\end{array}\right]$$

This is just the same as the matrix-vector product, for each column vector of the matrix on the right (the one getting 'hit' from the left). Alternatively, the $(i, j)^{th}$ entry in the product is given by the dot product of the i^{th} row of the left matrix with the j^{th} column of the right matrix. Draw a picture so you get this. In contrast to scalars, matrix multiplication is not *commutative*, *i.e.* in general $AB \neq BA$. Order matters!

The determinant is det M := ad - bc for the above matrix, also written $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$. If det M = 0 we say M is 'singular'. There are more complicated expressions for det of 3-by-3 and higher. If A and B are same-sized square matrices then det $(AB) = \det A \cdot \det B$.

All nonsingular matrices are invertible, that is a same-sized matrix M^{-1} exists such that $MM^{-1} = I$ and $M^{-1}M = I$. Here $I := \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the identity matrix, which has ones only on the 'diagonal'. Singular matrices are not invertible. The formula for the 2-by-2 inverse is

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
(3)

Notice that the factor out front is $1/(\det M)$.

It's a beautiful result of linear algebra that (1) is uniquely solvable when det $M \neq 0$. One way to get the solution is to eliminate a variable from the simultaneous equations and solve the high-school way. A more elegant way is to multiply (2) from the left by M^{-1} to give

$$\mathbf{x} = M^{-1}\mathbf{y} \tag{4}$$

an explicit solution showing the elegance of matrix algebra.

You can 'transpose' M by reflecting along the diagonal to give

$$M^T := \left[\begin{array}{cc} a & c \\ b & d \end{array} \right]$$

Note that 2-by-2 matrices can represent linear (homogeneous) transformations on the plane, *i.e.* stretching, shear, rotation...

All of the above (suitably generalized) applies to n-by-n matrices too!

Exercises

- 1. Say $M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Find det M and M^{-1} . Solve $M\mathbf{x} = \mathbf{b}$ for $\mathbf{b} = \begin{bmatrix} 6 & -1 \end{bmatrix}^T$. 2. if $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = A^T$, compute AB and BA. Are they equal? 3. If $\begin{bmatrix} a & 2 \\ 3 & 4 \end{bmatrix}$ is singular, what is a?
- 4. You may also have functions (e.g. of t) as matrix entries. Find $\begin{vmatrix} e^t & e^{-4t} \\ e^{3t} & e^{-t} \end{vmatrix}$. Find $\begin{vmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{vmatrix}$ and simplify.
- 5. Verify that M and M^{-1} given by (3) multiply to give I, in either order.
- 6. Verify that the general solution to (1) given by elimination matches that using (4).
- 7. If A is singular, prove using the above that AB is not invertible for any B.
- 8. Prove using the above that $\det M^{-1} = (\det M)^{-1}$.

Answers:

1. -2,
$$\begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} -13 & 19/2 \end{bmatrix}^T$.
2. $AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq BA = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

- 3. a = 3/2.
- 4. $1 e^{-t}$, and 1.
- 5. it works
- 6. $x_1 = (dy_1 by_2)/(ad bc), x_2 = (-cy_1 + ay_2)/(ad bc)$
- 7. det $AB = 0 \cdot \det B = 0$ always.
- 8. $1 = \det I = \det(MM^{-1}) = \det M \cdot \det M^{-1}$ now rearrange to give result.