SOLUTIONS CO

Your name:

Alex Barnett

Michael Mustv

Instructor (please circle): Math 22 Summer 2017, Homework 9, due start of Wed Aug 23 class

Total pte: 14.

This one is shorter since you have 2 days less. (1) Linear regression! Let x_1 be the intercept and x_2 be the slope for a general linear function $y(t) = x_1 + x_2 t$. Find its least squares fit to the data (0,0), (2,-2), and (3,4), which

are three points (t, y) in the plane. Here's how to set up the linear system (you don't need to read Sec. 6.6 unless interested): The first point says $x_1 + x_2 = 0$, the next says

 $x_1 + x_2 \cdot 2 = -2$, and the last says $x_1 + x_2 \cdot 3 = 4$.

(a) The system is inconsistent. Find the least squares solution vector(s) $\hat{\mathbf{x}} = \begin{vmatrix} \hat{x}_1 \\ \hat{x}_2 \end{vmatrix}$. 503

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \qquad \overline{b} = \begin{bmatrix} 0 \\ -2 \\ 4 \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} 0 \\ -2 \\ 4 \end{bmatrix}$$

Normal egus need

$$ATA = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 5 & 13 \end{bmatrix}, AT = \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$

$$AT = \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 5 & | & 2 \\ 5 & | & 3 & | & 8 \end{bmatrix}$$
 $\sim \begin{bmatrix} 3 & 5 & | & 2 \\ | & 15 & 39 & | & 24 \end{bmatrix} \sim \begin{bmatrix} 3 & 5 & | & 2 \\ 0 & | & 4 & | & 4 \end{bmatrix}$

$$\sim \begin{bmatrix} 3 & 0 & | & -3 \\ 0 & | & | & | \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & -1 \\ 0 & | & | & | \end{bmatrix}$$

So
$$\vec{x} = \begin{bmatrix} \vec{x}_1 \\ \vec{x}_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

yes, since AA full mil.

(1pt)

You've now learned the best-fit intercept \hat{x}_1 and slope \hat{x}_2 ! Is this solution unique?

2 ρ (b) Let A be any matrix, possibly rectangular. Prove that if A^TA is invertible, then the columns of A are linearly independent.

Let \vec{x} solve $A\vec{x} = \vec{O}$. Left-multiply by AT: $ATA\vec{x} = AT\vec{O} = \vec{O}$ By I.M.T., since ATA is invertible, the homog. $\lim_{n \to \infty} sys(ATA)\vec{x} = \vec{O}$ has only the soln $\vec{x} = \vec{O}$. Thus $\vec{x} = \vec{O}$. By define of L.I, cols. of A arc. L.I.

(2) (a) Consider the matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Over all vectors \mathbf{x} in \mathbb{R}^3 with $\|\mathbf{x}\| = 1$, what is the largest $\|A\mathbf{x}\|$ can be? [Hint: if it helps, exploit that that AA^T and A^TA have identical *nonzero* eigenvalues.]

 $6_{1} = \max_{\|\mathbf{x}\|=1} \|(\mathbf{A}\mathbf{x}\|) \quad \text{by definition.} = \sqrt{\lambda_{1}(\mathbf{A}^{T}\mathbf{A})} \quad \text{emploition.}$ $= \sqrt{\lambda_{1}(\mathbf{A}\mathbf{A}^{T})} \quad \text{hinh.}$ $= \sqrt{\lambda_{1}(\mathbf{A}\mathbf{A}^{T})} \quad \text{find eignals.}$ $= \sqrt{\lambda_{2}(\mathbf{A}\mathbf{A}^{T})} \quad \text{find eignals.}$ $= \sqrt{\lambda_{2}(\mathbf{A}\mathbf{A}^{T})} \quad \text{find eignals.}$ $= \sqrt{\lambda_{1}(\mathbf{A}\mathbf{A}^{T})} \quad \text{find eignals.}$ $= \sqrt{\lambda_{1}(\mathbf{A}\mathbf{$

(b) Compute by hand the full SVD of the previous A, ie give U, Σ , and V. [Hints: find the third column of V however you like, and make sure that your \mathbf{u}_i vectors match your \mathbf{v}_j vectors in ordering and sign]

$$ATA = \begin{bmatrix} 21 \\ 69 \end{bmatrix} \begin{bmatrix} 200 \\ 100 \end{bmatrix} = \begin{bmatrix} 521 \\ 210 \end{bmatrix}$$

 $A^{T}A-6I = \begin{bmatrix} -1 & 2 & 1 \\ 2-5 & 0 \\ 1 & 0-5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -5 \\ 0 & 2-4 \\ 0-5 & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & 0-5 \\ 0 & 1-2 \\ 0 & 0 \end{bmatrix}$

$$X_1 = 5x_3$$
 $X_2 = 2x_3$
 $X_3 = x_3$
 $X_4 = 5x_3$
 $X_5 = 5x_5$
 $X_7 = 5x_5$
 X_7

 $\begin{array}{lll}
A^{T}A - I &= \begin{bmatrix} 4 & 2 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} & \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \end{bmatrix} & \text{So } \vec{V}_{1} = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} & \sim \begin{bmatrix} 0 \\ -1/55 \\ 2/55 \end{bmatrix}$

get since $\{\vec{v}_3\}$ is basis for Nul A: $A \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1-2 \end{bmatrix}$ so $\vec{V}_3 = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \sim \begin{bmatrix} -1/6 \\ 1/56 \end{bmatrix}$ So V = [9/30 -1/55 2/16] 2/530 -1/55 2/16] 1/50 2/16 1/56

compute
$$A\overline{V_1'} = \begin{bmatrix} 12 \\ 6 \end{bmatrix} \xrightarrow{\text{norm.}} \overline{U_1} = \begin{bmatrix} 2/55 \\ 1/55 \end{bmatrix} \Rightarrow A\overline{V_2'} = \begin{bmatrix} -1 \\ 2/55 \end{bmatrix}$$
note easier to use

$$A\overline{v_2}' = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \xrightarrow{norm.} \overline{u_2} = \begin{bmatrix} -1 \\ \sqrt{5} \end{bmatrix}$$

note easier to use unnormalized V's here i

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2/55 & -1/55 \\ 1/55 & 2/55 \end{bmatrix} \begin{bmatrix} 56 & 10 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5/530 & 2/530 & 1/530 \\ 0 & -1/55 & 2/55 \end{bmatrix}$$

$$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}$$

is full SVD.