Your name:

Instructor (please circle):

Alex Barnett

Michael Musty

Math 22 Summer 2017, Homework 7, due Fri Aug 11

There is limited space, but please show the key intermediate steps to achieve full credit.

(1) Consider the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, which you should check maps the vector $\mathbf{x}^{(k)} := \begin{bmatrix} f_k \\ f_{k-1} \end{bmatrix}$ to $\mathbf{x}^{(k+1)} := \left| \begin{array}{c} f_{k+1} \\ f_k \end{array} \right|$, where f_k , $k = 0, 1, \ldots$, is the Fibonacci sequence $1, 1, 2, 3, 5, 8, \ldots$

(a) Write the matrix in the form $A = PDP^{-1}$ (ie give all three matrices). Please use the golden ratio $\phi = (1 + \sqrt{5})/2$ for working and answers; note $-\phi^{-1} = (1 - \sqrt{5})/2$. Please also choose the 2nd row of P to be [1 1]. \leftarrow 50 ording λ_1, λ_2 cond be supperd.

Find eigenvalues: 1-7 2 = A-A-1-0 A= # d-d-12-4 A-DI - [] - [] SO V. = [] } } } $\begin{bmatrix} A + \phi^{-1} \end{bmatrix} = \begin{bmatrix} 1 + \phi^{-1} \\ 0 \end{bmatrix} = \begin{bmatrix} -\phi^{-1} \end{bmatrix}$ P= d-16 - d= d= d= [16] - 15[16] , D= [16]

2h. (b) Use this to write a formula for $\mathbf{x}^{(k)}$, for the dynamical system with matrix A, for the initial vector $\mathbf{x}^{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Reading off the first component gives an explicit formula for the kth Fibonacci number! (Isn't it weird that f_k must always be an integer?)

XIN = A+ X10 = PD+P-1X10 -- 15[-12010] = 11] = P= [[] - Lp [] - [(c) To what does f_{k+1}/f_k converge, if anything, as $k = \infty$, and why? (explain using

your formula).

Read X'00 = c, A'V = a VV for general n=2 since $\lambda_1 > \lambda_2$ then the 1st ten dominate as 10-00 so XIII conveys to the V direction 一个个

E1.7 (2)	You play the following "game," which involves a decisions made on the hour. If you are
(7pt) (2)	exercising this hour, then for sure the next hour you will start studying. If you are studying, then at the end of the hour you toss a fair coin: heads you continue studying, tails you switch to exercise. (This basic model doesn't include eating or sleeping. Details!)
[276]	(a) Let the ordering be $\mathbf{x} = \begin{bmatrix} \text{probability of exercising} \\ \text{probability of studying} \end{bmatrix}$. Write a stochastic matrix A whose Markov chain models the game.
	ordering $E = S$ Concial, romst $E = S$ writeh that $S = A$ of X' : $S = A$
[105]	(b) Is the matrix A regular? Explain. Evan flough A has a zero entry
	(b) Is the matrix A regular? Explain. Evan though A has a zero entry A? = [1/2 1/4] has all entries strictly position, so A is re
[2/6]	(c) Say your initial vector is $\mathbf{x}^{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. To what, if anything, does your probability
,	of studying tend in the long-time limit $k \to \infty$? Explain.
	Since A is regular, for any initial vector \$(0), km \$(h) = 9
	where of is the unique steady state vector.
	Golde for I. AZ = S CO XE No. (A-I) = No.

n X(h) = 9) Solve for q: Ax = x so x ∈ NnI(A-I) = NnI [1-1/2] Se $\vec{X} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ make total $\vec{\xi}(\vec{p}) = 1$. $\vec{q} = \frac{1}{3}\vec{x}' = \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix} \in \vec{\Sigma}$ Your ports of studying tends to 3.

so A is regular

(d) Prove the claim from class that any stochastic matrix A must have an eigenvalue 1. [2/5] [Hint: find a simple eigenvector of A^T .]

AT has rows flut are probability vectors, so
$$\stackrel{\sim}{\sum}$$
 (AT) $_{ij} = 1$, for Thus for $\nabla = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\Delta \nabla = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \nabla$

thus AT has an eigenvalue 1.

Since A & AT have identical eigenvalues, A also has eigenvalue I. Ladorit need to prove, but: det (A-XI)=det (A-XI).

A-I [1/3 | 1/3 | 1/3 | 1/4 | 1

BONUS If the PageRank Markov chain iteration were used to approximate solutions to (a)

Earliest is to real some paper A^k , eg. in MILAB

A) $A^5 = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$ all the = > 0 regular

b) A^2 has all the = yes.