Math 22: Linear Algebra. PRACTISE MIDTERM 2 - ANSWERS

August 4, 2006

1. a) +8 , b) $\lambda=1$ with $\mathbf{v}=\left[\begin{array}{c}-4 \\ 1\end{array}\right]$, and $\lambda=6$ with $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$,
2. $\mathrm{Col} A$ has basis $\left[\begin{array}{c}1 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{c}-4 \\ 2 \\ -6\end{array}\right]$. Row A has basis $\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 5 \\ 6\end{array}\right]$

Proof: basis for H must be lin indep vectors, which also lie in V. However, no more than $\operatorname{dim} V$ vectors can be lin indep in V. QED.
3.

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
4 & -2 & 1
\end{array}\right] \quad U=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -3 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

$L U$ is useful since once performed, $A \mathbf{x}=\mathbf{b}$ can be solved for vectors \mathbf{b} with only $O\left(N^{2}\right)$ effort, where N is typical size of matrix.
4. a) $\operatorname{Nul} A$, so it's a subspace, write out proof of Thm 2 (p. 227).
b) basis is the one vector $\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right] \cdot \operatorname{dim} W=1$.
5. (a) $\left[\begin{array}{c}-2 \\ -7 \\ 8\end{array}\right]$
(b) There are 2 basis vectors, so you know $[\mathbf{x}]_{\mathcal{B}}$ must have 2 components, call them c_{1} and c_{2}.

$$
c_{1}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
4 \\
-5
\end{array}\right]
$$

must be satisfied, since this what the \mathcal{B}-coords of \mathbf{x} mean. This is just a linear equation which we solve by row reduction of augmented matrix:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & 4 \\
-1 & 1 & -5
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \text { (R.E.F.) }
$$

It is consistent (otherwise \mathbf{x} would not be in H). The unique solution is $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{c}3 \\ -2\end{array}\right]$.
6. (a) False: \mathbb{R}^{2} is not a subspace of \mathbb{R}^{3} because its elements (2-component vectors) do not even come from \mathbb{R}^{3} (the set of 3 -component vectors). It is not even a subset.
(b) a linear transformation that is both one-to-one and onto
(c) False. $A \mathbf{x}$ is a unique object, so it cannot both be $\lambda_{1} \mathbf{x}$ and $\lambda_{2} \mathbf{x}$, which it would have to be if an eigenvector for both eigenvalues.
(d) Write the 3 polynomials in the standard basis, to get

$$
\left\{\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right\} \text { stack as cols, reduce to get }\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 2 \\
0 & 0 & -1
\end{array}\right]
$$

All 3 pivots, so we have 3 linearly-independent vectors in \mathbb{R}^{3}, so they form a basis. (You could also instead have said they span $\left.\mathbb{R}^{3}\right) . \mathbb{P}_{2}$ is isomorphic to \mathbb{R}^{3} so the original polynomials also form a basis for \mathbb{P}_{2}.

