Math 22: Linear Algebra. PRACTISE MIDTERM 2 — ANSWERS

August 4, 2006

1. a) +8, b)
$$\lambda = 1$$
 with $\mathbf{v} = \begin{bmatrix} -4\\1 \end{bmatrix}$, and $\lambda = 6$ with $\mathbf{v} = \begin{bmatrix} 1\\1 \end{bmatrix}$,
2. Col *A* has basis $\begin{bmatrix} 1\\-1\\5 \end{bmatrix}$, $\begin{bmatrix} -4\\2\\-6 \end{bmatrix}$. Row *A* has basis $\begin{bmatrix} 1\\0\\-1\\5 \end{bmatrix}$, $\begin{bmatrix} 0\\-2\\5\\6 \end{bmatrix}$.

Proof: basis for H must be lin indep vectors, which also lie in V. However, no more than dim V vectors can be lin indep in V. QED.

3.

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -2 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & -1 & 1 \\ 0 & -3 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

LU is useful since once performed, $A\mathbf{x} = \mathbf{b}$ can be solved for vectors \mathbf{b} with only $O(N^2)$ effort, where N is typical size of matrix.

4. a) Nul A, so it's a subspace, write out proof of Thm 2 (p. 227).

b) basis is the one vector
$$\begin{bmatrix} 3\\ -1\\ 2 \end{bmatrix}$$
. dim $W = 1$.
5. (a) $\begin{bmatrix} -2\\ -7\\ 8 \end{bmatrix}$

(b) There are 2 basis vectors, so you know $[\mathbf{x}]_{\mathcal{B}}$ must have 2 components, call them c_1 and c_2 .

	1		1		$\begin{bmatrix} 1 \end{bmatrix}$
c_1	2	$+ c_2$	1	=	4
			1		-5

must be satisfied, since this what the \mathcal{B} -coords of \mathbf{x} mean. This is just a linear equation which we solve by row reduction of augmented matrix:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\ -1 & 1 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
(R.E.F.)

It is consistent (otherwise **x** would not be in *H*). The unique solution is $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$.

- 6. (a) False: R² is not a subspace of R³ because its elements (2-component vectors) do not even come from R³ (the set of 3-component vectors). It is not even a subset.
 - (b) a linear transformation that is both one-to-one and onto
 - (c) False. $A\mathbf{x}$ is a unique object, so it cannot both be $\lambda_1 \mathbf{x}$ and $\lambda_2 \mathbf{x}$, which it would have to be if an eigenvector for both eigenvalues.
 - (d) Write the 3 polynomials in the standard basis, to get

$$\left\{ \begin{bmatrix} 2\\0\\4 \end{bmatrix}, \begin{bmatrix} 0\\1\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\} \text{ stack as cols, reduce to get } \begin{bmatrix} 2 & 0 & 0\\0 & 3 & 2\\0 & 0 & -1 \end{bmatrix} \right\}$$

All 3 pivots, so we have 3 linearly-independent vectors in \mathbb{R}^3 , so they form a basis. (You could also instead have said they span \mathbb{R}^3). \mathbb{P}_2 is isomorphic to \mathbb{R}^3 so the original polynomials also form a basis for \mathbb{P}_2 .