Math 22: Linear Algebra. MIDTERM 2

2 hrs, no calculators. Please answer all six questions. Answer on this sheet. Your NAME:

1. [11 points]

(a) Compute (without using row swaps) the *LU* decomposition of $A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ -4 & -3 & 2 & 0 \\ 6 & 2 & 0 & 1 \end{bmatrix}$

- (b) Counting from the left as usual, which is the *first* column of A that can be written as linear combination of the previous ones, and why?
- (c) Let B be any lower triangular matrix with non-zero entries on the diagonal. Prove that the inverse of B exists and is also lower triangular. [Hint: elementary row operations].

2. [12 points]

(a) Find the real eigenvalues (if they exist) and multiplicities of $\begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix}$

(b) Find the real eigenvalues (if they exist) and multiplicities of $\begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$

(c) Find the eigenvalues (which are all real) and multiplicities of $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 1 \\ -1 & 0 & 1 \end{bmatrix}$

(d) Find a basis for the eigenspace associated with the above double eigenvalue. What is its dimension?

- 3. [10 points]
 - (a) True/false: Two eigenvectors with the same eigenvalue are always linearly independent?
 - (b) What is the rank of a 5×3 matrix if a basis for its null space contains only one vector?
 - (c) True/false: Given a $n \times n$ matrix A, if $A\mathbf{x} = \mathbf{b}$ is inconsistent for some \mathbf{b} then A must have at least one real eigenvalue?

(d) True/false: The set
$$W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x + 2y = 0 \right\}$$
 is a subspace of \mathbb{R}^2 ?

(e) Explain why a $n \times n$ matrix can have at most n eigenvalues.

4. [7 points] Compute the determinants of the following matrices: [Hint: in each case one method is much easier than the other]

	2	0	6]
(a)	0	7	0
	1	0	3

	[1]	3	2]
(b)	2	6	9
. ,	3	7	29
	-		_

5. [11 points] The matrix A has been converted to reduced echelon form as follows

A =	-2	-4	1	0	4	~	1	2	0	0	-1^{-1}].
	0	0	0	3	3		0	0	1	0	2	
	1	2	2	1	5		0	0	0	1	1	
	3	6	0	-2	-2		0	0	0	0	0	

(a) Write down a basis for the column space of A:

(b) Write down a basis for the null space of A:

- (c) What is the dimension of the subspace consisting of all possible vectors \mathbf{b} such that $A\mathbf{x} = \mathbf{b}$ for some \mathbf{x} ?
- (d) What is the dimension of the subspace consisting of all solutions to the equation $A\mathbf{x} = \mathbf{0}$?
- (e) Explain why the first 3 rows of the R.E.F. of A form a basis for Row A.

6. [9 points]

(a) Does the set $\{1 + t^2, t + t^2, t - t^2\}$ form a basis for the vector space of all polynomials of the form $a + bt + ct^2$? Explain what criteria you tested, and if each test failed or passed.

(b) The set of vectors
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
 form a basis \mathcal{B} for \mathbb{R}^3 . If $\mathbf{x} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$, find $[\mathbf{x}]_{\mathcal{B}}$.

(c) Prove that for any basis for \mathbb{R}^n the coordinate mapping $\mathbf{x} \to [\mathbf{x}]_{\mathcal{B}}$ is one-to-one.