Math 22: Linear Algebra. MIDTERM 2

2 hrs, no calculators. Please answer all six questions. Answer on this sheet. Your NAME:

1. [11 points]
(a) Compute (without using row swaps) the $L U$ decomposition of

$$
A=\left[\begin{array}{cccc}
2 & 1 & 1 & 0 \\
-4 & -3 & 2 & 0 \\
6 & 2 & 0 & 1
\end{array}\right]
$$

(b) Counting from the left as usual, which is the first column of A that can be written as linear combination of the previous ones, and why?
(c) Let B be any lower triangular matrix with non-zero entries on the diagonal. Prove that the inverse of B exists and is also lower triangular. [Hint: elementary row operations].
2. [12 points]
(a) Find the real eigenvalues (if they exist) and multiplicities of $\left[\begin{array}{cc}-2 & 1 \\ 0 & -2\end{array}\right]$
(b) Find the real eigenvalues (if they exist) and multiplicities of $\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]$
(c) Find the eigenvalues (which are all real) and multiplicities of $\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 3 & 1 \\ -1 & 0 & 1\end{array}\right]$
(d) Find a basis for the eigenspace associated with the above double eigenvalue. What is its dimension?
3. [10 points]
(a) True/false: Two eigenvectors with the same eigenvalue are always linearly independent?
(b) What is the rank of a 5×3 matrix if a basis for its null space contains only one vector?
(c) True/false: Given a $n \times n$ matrix A, if $A \mathbf{x}=\mathbf{b}$ is inconsistent for some \mathbf{b} then A must have at least one real eigenvalue?
(d) True/false: The set $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x+2 y=0\right\}$ is a subspace of \mathbb{R}^{2} ?
(e) Explain why a $n \times n$ matrix can have at most n eigenvalues.
4. [7 points] Compute the determinants of the following matrices: [Hint: in each case one method is much easier than the other]
(a) $\left[\begin{array}{lll}2 & 0 & 6 \\ 0 & 7 & 0 \\ 1 & 0 & 3\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 6 & 9 \\ 3 & 7 & 29\end{array}\right]$
5. [11 points] The matrix A has been converted to reduced echelon form as follows

$$
A=\left[\begin{array}{ccccc}
-2 & -4 & 1 & 0 & 4 \\
0 & 0 & 0 & 3 & 3 \\
1 & 2 & 2 & 1 & 5 \\
3 & 6 & 0 & -2 & -2
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Write down a basis for the column space of A :
(b) Write down a basis for the null space of A :
(c) What is the dimension of the subspace consisting of all possible vectors \mathbf{b} such that $A \mathbf{x}=\mathbf{b}$ for some \mathbf{x} ?
(d) What is the dimension of the subspace consisting of all solutions to the equation $A \mathbf{x}=\mathbf{0}$?
(e) Explain why the first 3 rows of the R.E.F. of A form a basis for Row A.
6. [9 points]
(a) Does the set $\left\{1+t^{2}, t+t^{2}, t-t^{2}\right\}$ form a basis for the vector space of all polynomials of the form $a+b t+c t^{2}$? Explain what criteria you tested, and if each test failed or passed.
(b) The set of vectors $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ form a basis \mathcal{B} for \mathbb{R}^{3}. If $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, find $[\mathbf{x}]_{\mathcal{B}}$.
(c) Prove that for any basis for \mathbb{R}^{n} the coordinate mapping $\mathbf{x} \rightarrow[\mathbf{x}]_{\mathcal{B}}$ is one-to-one.

