Math 22: Linear Algebra. PRACTISE MIDTERM 1 ANSWERS

July 19, 2006

No guarantee of correctness-please email with corrections.

1. Consistent, x_{2} is free.

$$
\begin{aligned}
x_{1} & =-5-3 x_{2} \\
x_{2} & =x_{2} \\
x_{3} & =1 \\
x_{4} & =2
\end{aligned}
$$

2. consistent, 2 free vars

$$
\begin{aligned}
& x_{1}=-5+x_{4} \\
& x_{2}=-1+x_{3}+x_{4} \\
& x_{3}=x_{3} \quad \text { free } \\
& x_{4}=x_{4} \quad \text { free }
\end{aligned}
$$

3. (a) see Ch. 1.7 p. 65
(b) yes. 3 pivots
(c) no since treating as aug matrix 2 x 1 with RHS, is inconsistent.
(d) spans when pivot in every row, i.e. $h \neq 4$.
4. (a) False. You can be one-to-one but not be onto. e.g. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $T(x, y)=(x, y, 0)$
(b) linearity $T\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}\right)=c_{1} T\left(\mathbf{u}_{1}\right)+c_{2} T\left(\mathbf{u}_{2}\right)$ gives answer $\left[\begin{array}{c}11 \\ 9\end{array}\right]$.
(c) $a d-b c=12-(-12)=0$ so not invertible.
(d) True. Use properties of transpose and inverse.
(e) the matrix formed by stacking the vectors is square, so if it misses a pivot in a row, it must also in a column, so they cannot by linearly independent.
5. $\mathbf{x}=\mathbf{p}+\alpha \mathbf{v}_{1}$ with $\mathbf{p}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and $\mathbf{v}_{1}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$.

The solution set is a line not through origin.
6. $\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$
T is onto since every point in \mathbb{R}^{2} can be reached by such a transformation from some point \mathbf{x}.

