Math 22: Linear Algebra. PRACTISE MIDTERM 1

No calculators. Please answer on this sheet. Your NAME:

1. Solve this system of linear equations using reduction of the augmented matrix to reduced echelon form:

$$
\begin{aligned}
3 x_{3}+x_{4} & =1 \\
2 x_{1}+6 x_{2}+x_{3}-2 x_{4} & =15 \\
-x_{1}-3 x_{2}+2 x_{3}+x_{4} & =-5
\end{aligned}
$$

If consistent, write the general solution:

$$
\begin{aligned}
& x_{1}= \\
& x_{2}= \\
& x_{3}= \\
& x_{4}=
\end{aligned}
$$

Otherwise, if not consistent, explain why.
2. Write the general solution to the following traffic flow problem, if there is one.

3. (a) Define the concept of linear independence.
(b) Fixing $h=0$, Is the set of three vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ h\end{array}\right]$, linearly independent?
(c) Still fixing $h=0$, is the last of these vectors in the span of the first two vectors?
(d) What condition on h is required if the set of three vectors is to $\operatorname{span} \mathbb{R}^{3}$?
4. (a) True/false? If the range of a linear transformation T does not fill the codomain, then T must not be one-to-one. If true, explain. If false, find a counterexample.
(b) If a linear transformation takes $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ to $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to $\left[\begin{array}{l}-5 \\ -1\end{array}\right]$,
is it possible to know to what vector does it take $\left[\begin{array}{c}2 \\ -1\end{array}\right]$? If so, find the answer. In either case Explain why using any relevant definition or theorem.
(c) Is the matrix $\left[\begin{array}{cc}2 & -3 \\ -4 & 6\end{array}\right]$ invertible? If so, give the inverse.
(d) True/false? $A^{T}\left(A^{-1}\right)^{T}=I$, the identity, for all invertible matrices A ?
(e) If a set of m vectors in \mathbb{R}^{m} do not span \mathbb{R}^{m}, what (if anything) can you always say about their linear independence?
5. For $\mathrm{A}=\left[\begin{array}{cc}5 & 10 \\ 2 & 4\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}15 \\ 6\end{array}\right]$, write the solution set of $A \mathbf{x}=\mathbf{b}$ in parametric vector form $\mathbf{x}=\mathbf{p}+\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}+\cdots$

What type of geometrical object (within the domain \mathbb{R}^{2}) is the solution set?
6. A transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ corresponds to a rotation of points by angle $-\pi / 2$ (i.e., 90° clockwise), followed by a magnification (dilation, or rescaling) by factor 2 . Find the standard matrix for T :

Is T 'onto' \mathbb{R}^{2} ? (You may explain graphically or algebraically).

Reminder: material is everything up to an including 2.3 (note: I have decided not to include 2.5 since we didn't finish it all on Fri).

More practise problems (sorry if some duplicate HW problems):
1.1: 15, 28.
1.2: 15, 19.
1.3: 13.
1.4: 11, 14, 18, 19, 24.
1.5: 5, 9, 10, 29-32.
1.6: 13.
1.7: $2,5,15,17,27,28$.
1.8: $3,9,11$.
1.9: 2, 9, 10, 17, 25.
1.10: Any of the remaining $2 x 2$ migration matrix probs without an $[M]$ symbol.

Chapter 1 supplementary exercises (p. 102): 1, 4 .
2.1: 8, 10.
2.2: 3, 6, 32 .
2.3: 5, 15, 17, 19, 24.

