Math 22: Linear Algebra. PRACTISE MIDTERM 1

No calculators. Please answer on this sheet. Your NAME:

1. Solve this system of linear equations using reduction of the augmented matrix to reduced echelon form:

		$3x_3 +$	x_4	=	1
$2x_1 +$	$6x_2 + $	$x_3 -$	$2x_4$	=	15
$-x_1 - $	$3x_2 +$	$2x_3 +$	x_4	=	-5

If consistent, write the general solution:

$$\begin{array}{rcl} x_1 & = & \\ x_2 & = & \\ x_3 & = & \\ x_4 & = & \end{array}$$

Otherwise, if not consistent, explain why.

2. Write the general solution to the following traffic flow problem, if there is one.

- 3. (a) Define the concept of linear independence.
 - (b) Fixing h = 0, Is the set of three vectors $\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\2\\h \end{bmatrix}$, linearly independent?

(c) Still fixing h = 0, is the last of these vectors in the span of the first two vectors?

(d) What *condition* on h is required if the set of three vectors is to span \mathbb{R}^3 ?

- 4. (a) True/false? If the range of a linear transformation T does not fill the codomain, then T must not be one-to-one. If true, explain. If false, find a counterexample.
 - (b) If a linear transformation takes $\begin{bmatrix} 1\\0 \end{bmatrix}$ to $\begin{bmatrix} 3\\4 \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix}$ to $\begin{bmatrix} -5\\-1 \end{bmatrix}$, is it possible to know to what vector does it take $\begin{bmatrix} 2\\-1 \end{bmatrix}$? If so, find the answer. In either case Explain why using any relevant definition or theorem.

(c) Is the matrix
$$\begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix}$$
 invertible? If so, give the inverse

- (d) True/false? $A^T (A^{-1})^T = I$, the identity, for all invertible matrices A?
- (e) If a set of m vectors in \mathbb{R}^m do not span \mathbb{R}^m , what (if anything) can you always say about their linear independence?

5. For $A = \begin{bmatrix} 5 & 10 \\ 2 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 15 \\ 6 \end{bmatrix}$, write the solution set of $A\mathbf{x} = \mathbf{b}$ in parametric vector form $\mathbf{x} = \mathbf{p} + \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \cdots$

What type of geometrical object (within the domain \mathbb{R}^2) is the solution set?

6. A transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ corresponds to a rotation of points by angle $-\pi/2$ (*i.e.*, 90° *clockwise*), followed by a magnification (dilation, or rescaling) by factor 2. Find the *standard matrix* for T:

Is T 'onto' \mathbb{R}^2 ? (You may explain graphically or algebraically).

Reminder: material is everything up to an including 2.3 (note: I have decided not to include 2.5 since we didn't finish it all on Fri).

More practise problems (sorry if some duplicate HW problems):

1.1: 15, 28.
1.2: 15, 19.
1.3: 13.
1.4: 11, 14, 18, 19, 24.
1.5: 5, 9, 10, 29–32.
1.6: 13.
1.7: 2, 5, 15, 17, 27, 28.
1.8: 3, 9, 11.
1.9: 2, 9, 10, 17, 25.
1.10: Any of the remaining 2x2 migration matrix probs without an [M] symbol. Chapter 1 supplementary exercises (p. 102): 1, 4.

2.1: 8, 10.
2.2: 3, 6, 32.
2.3: 5, 15, 17, 19, 24.