Math 22: Linear Algebra. PRACTISE FINAL ANSWERS

August 24, 2006

1. (a) W is $\operatorname{Col} A$ for $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & -1 & 1 \\ 1 & 0 & 3\end{array}\right]$. A column space is the span of some vectors, so must be a subspace.
(b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 0\end{array}\right]\right\}$
(c) W^{\perp} is the set of all vectors in \mathbb{R}^{3} that are orthogonal to all vectors in W.
(d) Either find basis for $\operatorname{Nul} A^{T}$, by writing A^{T} and following usual method. Or find the single vector orthog to the above two by subtracting orthogonal projection onto W. Answer: $\left\{\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right\}$
2. (a) the set is reached by addition of a const vector (any soln of inhomog eqn).
(b) check : lin indep ? (yes). Does B span W? (ie is each vector in W in span B ? yes since the two vectors comprising W are in span B). So, yes.
(c) no since not lin indep. (even though do span W).
3. (a) $8-3=5$.
(b) No since always have 2 or more free vars. So solution set is a constant plus a null-space, which is generally not a subspace since zero vector not included.
(c) See book p. 65.
4. (a) $M=\left[\begin{array}{ll}0.5 & 1 \\ 0.5 & 0\end{array}\right]$.
(b) $(0.75,0.25)$
(c) $(2 / 3,1 / 3)$.
(d) M is regular, since although it has a zero entry, M has all entries ¿ 0 , important to check this! Only then can the theorem (p. 294) stating convergence to the steady state be used.
5. (a) eigvals are 2 twice, both magnitude >1, so repellor.
(b) $-4,6$, both magnitude >1, so repellor.
(c) $1 / 2,3 / 2$, saddle point.
(d) 6 largest in magnitude, corresp eigvec is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
6. (a) yes since 2 distinct eigvals. $A=P D P^{-1}, D=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1\end{array}\right], V=$ $\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]$.
(b) $P D^{k} P^{-1}=\left[\begin{array}{cc}1 & 1-2^{-k} \\ 0 & 2^{-k}\end{array}\right]$.
7. (a) Symmetric matrices are always diagonalizable, and orthogonally so. $D=$ diagonal with eigenvalues $2,3,12$. $P=\left[\begin{array}{ccc}1 / \sqrt{2} & 1 / \sqrt{3} & -1 / \sqrt{6} \\ -1 / \sqrt{2} & 1 / \sqrt{3} & -1 \sqrt{6} \\ 0 & 1 / \sqrt{3} & 2 / \sqrt{6}\end{array}\right]$. I think!
(b) Since cols of P are orthonormal, coeffs $\alpha_{i}=\mathbf{x} \cdot \mathbf{v}_{i}$ for $i=1,2,3$.

So $[\mathbf{x}]_{B}=\left[\begin{array}{c}-1 / \sqrt{2} \\ \sqrt{3} \\ -3 / \sqrt{6}\end{array}\right]$.
8. (a) See problem 9 of http://www.math.dartmouth.edu/ ${ }^{\text {m m22f05/math_22_final_practice_sol.pdf }}$ (b) See problem 10 of the same, for nice solutions.
9. see p. 62.

