Math 22: Linear Algebra. PRACTISE FINAL

No calculators, one letter sheet of notes allowed. Your NAME:

This exam is maybe biased towards later material, to help you practise. I recommend you also go over earlier questions too from the Mid1, Mid2 practise lists.

1. $[12$ points $]$ A set of vectors in \mathbb{R}^{3} is given by $W=\left\{\left[\begin{array}{c}a+2 b+2 c \\ -2 b+c \\ a+3 c\end{array}\right] a, b, c\right.$ real $\}$.
(a) Determine whether W is a subspace of \mathbb{R}^{3}. (Explain any tests or results you make use of).
(b) Find a basis for W. [Hint: recognise W as one fundamental space of a matrix].
(c) Give a definition of the set W^{\perp}.
(d) Find a basis for W^{\perp}. [Hint: use previous hint].
2. [10 points]
(a) Explain how the solution set to $A \mathbf{x}=\mathbf{b}$ relates to the solution set of $A \mathbf{x}=\mathbf{0}$?
(b) Is $B=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]\right\}$ a basis for $W=\operatorname{Span}\left\{\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right]\right\}$
? (Why-pretend I always asked why!)
(c) Is $B=\left\{\left[\begin{array}{c}2 \\ -1\end{array}\right],\left[\begin{array}{c}-4 \\ 2\end{array}\right]\right\}$ a basis for $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x+2 y=0\right\}$?
3. [8 points]
(a) If A is a 6 -by- 8 matrix, and $\operatorname{dim} \operatorname{Nul} A=3$, what is $\operatorname{rank} A$?
(b) Can a system of 3 linear equations in 5 unknowns be unique? If not, is the solution set always a subspace?
(c) V is a finite dimensional vector space. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be vectors in V. Give the definition of linear independence of this set of vectors.

4. [12 points]

A given member of the population either votes Democratic (D) or Republican (R). In a given election if they voted D they will randomly vote R 50% of the time, and D 50% of the time, in the next election. However if they voted R they will always vote D in the next election.
(a) Write down the stochastic matrix.
(b) If in a given election the voter proproportions are 50% and 50%, find their proportions in the following election.
(c) Find the steady-state probability vector.
(d) Explain why in the long-time limit the proportions must tend to this steady-state vector.
5. [12 points] Categorize the stability of the origin, for the following dynamical systems $\mathbf{x}_{k+1}=A \mathbf{x}_{k}$.
(a) $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right]$
(d) In the middle case above, to what direction will the $k \rightarrow \infty$ behaviour of \mathbf{x}_{k} tend?

BONUS sketch trajectories for the last case above.
6. [10 points] Consider the matrix $A=\left[\begin{array}{ll}1 & 1 / 2 \\ 0 & 1 / 2\end{array}\right]$.
(a) Is this matrix diagonalizable? Why? If so, diagonalize it.
(b) Write an exact expression for the elements of the matrix A^{k}, where k is any non-negative integer.
7. [10 points]
(a) Orthogonally diagonalize the matrix $A=\left[\begin{array}{ccc}4 & 2 & -3 \\ 2 & 4 & -3 \\ -3 & -3 & 9\end{array}\right]$, or explain why it is not possible. That is, try to find an orthogonal matrix P and diagonal matrix D such that $A=P D P^{T}$.
(b) Find the coordinates of the point $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ in the eigenvector basis.
8. [12 points]
(a) Consider the singular matrix $M=\left[\begin{array}{llll}a & b & c & d \\ a & b & c & d \\ a & b & c & d \\ a & b & c & d\end{array}\right]$, where a, b, c, d are any real numbers. Show that $\operatorname{det}(A+I)=1+a+b+c+d$. [Hint: cofactor won't help you].
(b) Suppose matrices A and B have the same column space (they may have different columns though!). Do A and B necessarily have the i) same number of pivots? ii) same nullspace? iii) If A is invertible can you conclude B is too?
9. [8 points] Turn to page 61 of book and solve the network flow problem (Example 2).

Practise questions for new material since Midterm 2 include the following. You could make your own practise exam by picking $4-5$ of them, one from each major section, and throwing in some true/false questions from the supplementary exercises, also picking $4-5$ from Midterm 1 and 2 material.

I apologize if a couple duplicate HW questions. Also, if one seems too hard for an exam, or you are stuck how to do it, email me to ask.
4.9: 11 (b is asking for long-time limit)
5.3: 3, 5, 17, 25.
5.6: 2, 8 .

Chapter 5 supplementary exercises (p. 183): 1, 3 .
6.1: 20, 25.
6.2: $11,13,17,27$.
6.3: 7, 11, 17.
6.5: 1, 13, 17.

Chapter 6 Supplementary Exercises: 1, 5 .
7.1: 7, 9, 13, 19, 25a-c.

Chapter 7 Supplementary Exercises: 1a-c, e, n, 2, 4, 5.
For some (more theoretical but fun) practise questions, see the previous exam linked on the Resources page, at
http://www.math.dartmouth.edu/~m22f05/math_22_final_practice.pdf

