Math 22 Lin Alg: Homework 8

due Wed Aug 16 ... but best if do relevant questions after each lecture

After a bit of diagonalization, we reap the benefits of our work with some cool applications. Note I jump backwards to 4.9 following the lecture order.
5.3: Goals: Be able to diagonalize a matrix or tell it is not diagonalizable. Know how the factorization $A=P D P^{-1}$ gives you A^{k} efficiently.
2 (note you'll need to get P^{-1}), 8,10 (key), 12 (key), 26, 28 (fun proof).
4.9: Goals: Be able to construct a stochastic matrix from a description in words, find its steady state vector. Understand the long-term behavior, connection to eigenvalues.
2 (won't need matlab for this),
12 (compute the steady state vector by hand. You can check with matlab),
17 (beautiful proof that $\lambda=1$ is an eigenvalue of P. Make sure you explain precisely each step).
A. Fun exploration of the Google PageRank algorithm (also see links on our Resources webpage). Imagine the whole web has $n=3$ pages: a, b, c. Page a links to b ; page b links to a and c ; page c links to a .

1. Draw the graph, write down the stochastic matrix P, and find its steady-state vector with matlab [Hint: $[\mathrm{V}, \mathrm{D}]=\mathrm{eig}(\mathrm{P})$ gives V the matrix with eigenvectors in columns]. Which page(s) have highest rank?
2. Page b's webmaster tries to beat the system by adding a link from b to itself. Does b's rank increase? What happens if b adds more and more links to itself? (try it)
3. Going back to the original P, now c decides to link once to itself, but not to a. What happens to the steady-state vector? Does this seem fair? Explain it in terms of the 'random surfer' model.
4. The problem just exposed is fixed in PageRank as follows: the $n \times n$ eigenvector equation $\mathbf{x}=P \mathbf{x}$ is modified to
$\mathbf{x}=d P \mathbf{x}+(1-d) \mathbf{e}, \quad$ with $0<d<1, \quad$ and the fixed column vector $\mathbf{e}=[1 / n 1 / n \ldots 1 / n]^{T}$
With $d=0.85$, a typical choice ${ }^{1}$, find the steady state solution \mathbf{x} for the previous situation. [Hint: rearrange it algebraically - is it, as claimed in the original paper (!), still an eigenvector equation? Then use matlab to solve it numerically]. Congratulations: you now understand (part of) Google! In practise $n \sim 10^{10}$. Try to imagine that. Do you think an $O\left(n^{3}\right)$ algorithm is used?
5. [Optional bonus]: Prove that any \mathbf{x} solving the modified equation is still a probability vector.
5.6: Goals: Be able to evolve a dynamical system via the eigenvector decomposition, predict long-time behavior by finding attractors, repellors, or saddle points.
1, 12 (feel free to use matlab to check your eigenvalues and vectors).
6.1: Goals: Compute the inner product of vectors and how it relates to the length; compute the distance between two vectors; how to determine when vectors are orthogonal, and how it relates to the Pythagorean theorem.
$2,8,12,14,16$. (These are all very quick-do not be alarmed).
[^0]
[^0]: ${ }^{1}$ See web references. Also note: to connect with stochastic matrices, I have chosen our definition of page rank to be n times smaller than $P R$ discussed in Google literature.

