1. Let X be an $n \times 2$ matrix, and suppose that the columns of X are linearly dependent. Show that $X^{T} X$ is not invertible.

ANS: Since the columns of X are linearly dependent, we can assume without loss of generality that X can be written as

$$
X=\left[\begin{array}{cc}
1 & a_{0} \\
1 & a_{0} \\
\vdots & \vdots \\
1 & a_{0}
\end{array}\right]
$$

where a_{0} is a real number. Then $X^{T} X$ equals

$$
X^{T} X=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
a_{0} & a_{0} & \ldots & a_{0}
\end{array}\right]\left[\begin{array}{cc}
1 & a_{0} \\
1 & a_{0} \\
\vdots & \vdots \\
1 & a_{0}
\end{array}\right]=\left[\begin{array}{cc}
n & n a_{0} \\
n a_{0} & n a_{0}^{2}
\end{array}\right]
$$

The determinant of the 2×2 matrix is $(n)\left(n a_{0}^{2}\right)-\left(n a_{0}\right)\left(n a_{0}\right)=0$. Therefore $X^{T} X$ is not invertible.

For the remaining questions, A is an $m \times n$ matrix.
2. Show that if $A \mathbf{x}=\mathbf{0}$, then $A^{T} A \mathbf{x}=\mathbf{0}$

ANS:

$$
A \mathbf{x}=\mathbf{0} \Rightarrow A^{T} A \mathbf{x}=A^{T} \mathbf{0} \Rightarrow A^{T} A \mathbf{x}=\mathbf{0}
$$

3. Show that if $A^{T} A \mathbf{x}=\mathbf{0}$, then $A \mathbf{x}=\mathbf{0}$. Hint: Use the fact that $\mathbf{x}^{T} A^{T} A \mathbf{x}=0$, and compare with exercise 25 , page 108 .

ANS: By the (infamous) Theorem $3(\mathrm{~d})$ on page $106, \mathbf{x}^{T} A^{T} A \mathbf{x}=0$ can be rewritten as $(A \mathbf{x})^{T}(A \mathbf{x})=0$. Now $(A \mathbf{x})^{T}$ is a matrix of size $1 \times m$ and $A \mathbf{x}$ is a vector of size $m \times 1$. Therefore, their product is of size 1×1, i.e. a real number. Let $\mathbf{u}=A \mathbf{x}=\left[\begin{array}{c}u_{0} \\ u_{1} \\ \vdots \\ u_{m}\end{array}\right]$. Then $(A \mathbf{x})^{T}(A \mathbf{x})=\mathbf{u}^{T} \mathbf{u}=u_{0}^{2}+u_{1}^{2}+\ldots+u_{m}^{2}=0$. The product $\mathbf{u}^{T} \mathbf{u}$ can equal 0 only if $u_{0}=u_{1}=\ldots=u_{m}=0$, i.e. $\mathbf{u}=\mathbf{0}$. Therefore, since $\mathbf{u}=A \mathbf{x}$, we must have $A \mathbf{x}=\mathbf{0}$.
4. Show why problems 2 and $\mathbf{3}$ imply that the columns of A are linearly independent if and only if the columns of $A^{T} A$ are linearly independent. Hint: What do problems $\mathbf{2}$ and $\mathbf{3}$ say about how the solution set of $A \mathbf{x}=\mathbf{0}$ relates to the solution set of $A^{T} A \mathbf{x}=\mathbf{0}$?

ANS: In Problem 2 we showed that if $\mathbf{x}_{\mathbf{0}}$ is in the solution set of $A \mathbf{x}=\mathbf{0}$ (i.e. plugging $\mathbf{x}_{\mathbf{0}}$ into the equation yields $A \mathbf{x}_{\mathbf{0}}=\mathbf{0}$), then $\mathbf{x}_{\mathbf{0}}$ is also in the solution set of $A^{T} A \mathbf{x}=\mathbf{0}$. Therefore, the solution set of $A \mathbf{x}=\mathbf{0}$ is contained in (a subset of) the solution set of $A^{T} A \mathbf{x}=\mathbf{0}$.

In Problem $\mathbf{3}$ we showed that if $\mathbf{x}_{\mathbf{0}}$ is in the solution set of $A^{T} A \mathbf{x}=\mathbf{0}$, then $\mathbf{x}_{\mathbf{0}}$ is also in the solution set of $A \mathbf{x}=\mathbf{0}$. Therefore, the solution set of $A^{T} A \mathbf{x}=\mathbf{0}$ is a subset of the solution set of $A \mathbf{x}=\mathbf{0}$.

Each solution set can be a subset of the other only if both solution sets are equal. Therefore, the columns of A are linearly independent if and only if $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, which happens if and only if $A^{T} A \mathbf{x}=\mathbf{0}$ has only the trivial solution, which happens if and only if the columns of $A^{T} A$ are linearly independent.
5. Suppose the columns of A are linearly independent. Use Problems 2 and 3 to show that $A^{T} A$ is invertible.

ANS: Suppose the columns of A are linearly independent. By Problems 2 and 3, we know that the columns of $A^{T} A$ are linearly independent. This implies that $A^{T} A \mathbf{x}=\mathbf{0}$ has only the trivial solution, which implies that $A^{T} A$ has n pivot columns. $A^{T} A$ has n pivot columns implies that $A^{T} A$ is row equivalent to the identity matrix I, and this implies that $A^{T} A$ is invertible.

OR

Suppose the columns of A are linearly independent. By Problems 2 and $\mathbf{3}$, we know that the columns of $A^{T} A$ are linearly independent. Therefore, by the Invertible Matrix Theorem (i.e. the Über Theorem), $A^{T} A$ is invertible.

