Ungraded Quiz + Questionnaire

Math 22: 12 Section

March 28, 2014

1. Solve the linear system

$$
\begin{aligned}
& x+y=1 \\
& x+2 y=1
\end{aligned}
$$

Solution:

Write the augmented matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

Subtract the first from the second row, transforming the matrix to echelon form

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

There are solutions because no bad rows. Subtract the second row from the first to get

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

which tells us that the solution is $x=1, y=0$.
2. Two systems of linear equations are equivalent when they have the same solution set/solutions. A system of linear equations is consistent when it has at least one solution.
3. True or false: a linear combination of vectors in \mathbb{R}^{3} is another vector in \mathbb{R}^{3}.
4. Let $\mathbf{v}=(1,2)$ and $\mathbf{w}=(2,4)$ in \mathbb{R}^{2}. Write \mathbf{v} as a scalar multiple of \mathbf{w} and vice versa.

If we multiply \mathbf{v} by the scalar 2 , we obtain

$$
2 \mathbf{v}=2(1,2)=(2 \cdot 1,2 \cdot 2)=(2,4)=\mathbf{w} .
$$

If we multiply \mathbf{w} by the scalar $\frac{1}{2}$ we obtain

$$
\frac{1}{2} \mathbf{w}=\frac{1}{2}(2,4)=\left(\frac{1}{2} \cdot 2, \frac{1}{2} \cdot 4\right)=(1,2)=\mathbf{v} .
$$

