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Graph algebras
Continuous-trace graph algebras

Stable graph algebras

C∗-algebras
Graphs

C ∗-algebras

Definition

A C ∗-algebra is a complex ∗-algebra A with norm || · || such that

1 ||ab|| ≤ ||a||||b|| for any a, b ∈ A

2 A is complete with respect to the norm || · ||
3 ||a∗a|| = ||a||2 for any a ∈ A.

Example: The complex numbers C form a C ∗-algebra, with
z∗ = z . The matrices Mn(C) (with ∗ given by conjugate
transpose). Bounded operators B(H) (∗ is adjoint).
Example: If X is a locally compact Hausdorff space, then
C0(X ) := {f : X → C|f is continuous and vanishes at ∞} is a
C ∗-algebra under the || · ||∞-norm and pointwise operations.
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C ∗-algebras generated by partial isometries

Definition

A partial isometry is an element s in a C ∗-algebra such that ss∗ is
a projection.

C ∗-algebras generated by partial isometries have a long history.

Theorem (Coburn, ’67)

If A is generated by an element t satisfying t∗t = 1 and tt∗ � 1,
then A ∼= T , the Toeplitz algebra.

Theorem (Cuntz, ’77)

If A is generated by elements s, t satisfying

s∗s = t∗t = ss∗ + tt∗ = 1

then A ∼= O2, the Cuntz algebra.
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Directed graphs

Definition

A directed graph is a quadruple E = (E 0,E 1, r , s), where E 0 and
E 1 are (countable) sets and r , s : E 1 → E 0 are functions called the
range and source map, respectively.

(All the graphs in this talk will be directed, so we might start just
referring to them as graphs.) You can visualize a directed graph by
drawing a point in the plane for each v ∈ E 0 and drawing for each
edge e ∈ E 1 an arrow from s(e) to r(e).

. . .

. . .

. . .
...

...
...
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Graph C ∗-algebras

Operator algebraists like graphs because they give us a standard
way to study a wide class of C ∗-algebras generated by partial
isometries. The basic idea is that you keep track of the relations
between the generators using the edge matrix of a directed graph.
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Graph C ∗-algebras

Definition

Given a directed graph E = (E 0,E 1, r , s) the graph algebra C ∗(E )
is the universal C ∗-algebra generated by a family
{se , pv : e ∈ E 1, v ∈ E 0}, where the pv are mutually orthogonal
projections and the se are partial isometries with mutually
orthogonal range projections satisfying

1 s∗e se = ps(e)

2 ses∗e ≤ pr(e)

3 pv =
∑

r(e)=v ses∗e if 0 < |r−1(v)| <∞.
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Graph algebras

If E is the graph

v

v
w

w

e .

then you can show that C ∗(E ) ∼= M2(C).
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Graph algebras

Properties of the directed graph E control the algebra C ∗(E ).

1 The algebra C ∗(E ) is a limit of finite-dimensional algebras
(AF) if and only if E contains no directed cycles.

2 The algebra is purely infinite if and only if every vertex
connects to a cycle and no vertex emits only one simple cycle.

3 The algebra is simple if and only if E is cofinal, every cycle of
E has an entrance, and we can reach every vertex of E from
every infinite receiver.

We aim to characterize two C ∗-algebraic properties for graph
algebras. First, we determine which graphs yield continuous-trace
graph algebras. Then we examine existing theorems determining
which graphs yield stable graph algebras.
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Part I: Continuous-trace graph algebras
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Hausdorff spectrum

The set of unitary equivalence classes of irreducible representations
of a C ∗-algebra A forms a topological space called the spectrum of
A, denoted by Â. This can be a poorly-behaved topological space.

Example

The spectrum of B(H) is uncountable and non-Hausdorff.

Many people have studied various topological aspects of the
spectrum. Goehle determined when a suitably nice graph E yields
a graph algebra with Hausdorff spectrum.
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Continous-trace C ∗-algebras

If A has Hausdorff spectrum then for any point t = [π] in the
spectrum and any element a ∈ A, you can consider
a(t) = a + ker π ∈ A/ ker π. Since Â is Hausdorff, this has a
well-defined rank.

Definition

Let A be a C ∗-algebra with Hausdorff spectrum. Then A has
continuous trace if for every point t ∈ Â, there is a neighborhood
U of t and an element a ∈ A such that a(s) is a rank-one
projection for all s ∈ U.

The upshot of this is that continuous-trace C ∗-algebras act like
“locally trivial non-commutative fiber bundles.” These algebras are
well-studied and have nice representation theory.
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Continuous-trace C ∗-algebras

Example: Let X be a locally compact Hausdorff space and let
A = C0(X ,K) denote the set of all continuous functions from X to
K which vanish at infinity. Then A has continuous trace.

Example: Let

A = {f : [0, 1]→ M2(C) : f is continuous, f (0) =

(
s 0
0 0

)
}.

Then A has continuous trace.
We characterize those graphs which yield continuous-trace graph
algebras.
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Groupoids

In order to determine when a graph E yields a continuous-trace
graph algebra, we use groupoids. A groupoid G is a set along with

1 a subset G (2) ⊂ G × G of composable pairs;

2 an associative operation G (2) → G written (α, β)→ αβ called
composition;

3 a map G → G written γ → γ−1 called inversion which allows
cancellation on the left and right

There is no longer any identity element in a groupoid but there are
“partial identities” called units. A unit of G is an element u such
that u = u2 = u−1. In general there are many units; they form the
unit space of G , denoted by G (0).
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Groupoids

Let r : G → G (0) be given by r(γ) = γγ−1 and s : G → G (0) be
given by s(g) = γ−1γ. Then r and s are referred to as the range
and source maps of G .

These maps give a nice description of the
composable pairs: (γ, γ′) ∈ G (2) if and only if s(γ) = r(γ′). We
can visualize an element in G as an arrow from its source to its
range.

v1 v2 v3

r(γ) s(γ) = r(γ′) s(γ′)

γ γ′

γγ′
.

Dan Crytser Traces on graph algebras



Graph algebras
Continuous-trace graph algebras

Stable graph algebras

Continuous-trace C∗-algebras
Groupoids
Continuous-trace graph algebras

Groupoids

Let r : G → G (0) be given by r(γ) = γγ−1 and s : G → G (0) be
given by s(g) = γ−1γ. Then r and s are referred to as the range
and source maps of G . These maps give a nice description of the
composable pairs: (γ, γ′) ∈ G (2) if and only if s(γ) = r(γ′). We
can visualize an element in G as an arrow from its source to its
range.

v1 v2 v3

r(γ) s(γ) = r(γ′) s(γ′)

γ γ′

γγ′
.

Dan Crytser Traces on graph algebras



Graph algebras
Continuous-trace graph algebras

Stable graph algebras

Continuous-trace C∗-algebras
Groupoids
Continuous-trace graph algebras

Groupoids

Let r : G → G (0) be given by r(γ) = γγ−1 and s : G → G (0) be
given by s(g) = γ−1γ. Then r and s are referred to as the range
and source maps of G . These maps give a nice description of the
composable pairs: (γ, γ′) ∈ G (2) if and only if s(γ) = r(γ′). We
can visualize an element in G as an arrow from its source to its
range.

v1 v2 v3

r(γ) s(γ) = r(γ′) s(γ′)

γ γ′

γγ′
.

Dan Crytser Traces on graph algebras



Graph algebras
Continuous-trace graph algebras

Stable graph algebras

Continuous-trace C∗-algebras
Groupoids
Continuous-trace graph algebras

Groupoids

A topological groupoid is a groupoid with a topology that makes
the operations continuous.

Examples: Any topological group (such
as R,T,C,Z) is an example of a topological groupoid. Any
discrete groupoid is a topological groupoid.

Definition

A topological groupoid is étale if the range and source maps are
local homeomorphisms.

If G is étale then r−1(u) and s−1(u) are discrete for any u ∈ G (0).
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Groupoids

Groupoids are interesting for many reasons, but we mostly use
them to construct C ∗-algebras. If G is a second countable locally
compact Hausdorff étale groupoid, then we can define operations
on Cc (G ) by

f ∗ g(γ) =
∑
αβ=γ

f (α)g(β)

and
f ∗(γ) = f (γ−1)

These operations make Cc (G ) into a ∗-algebra. You can give
Cc (G ) a norm by taking a supremum over certain representations
into C ∗-algebras. Completing yields the groupoid C ∗-algebra
C ∗(G ).
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Groupoids

If E is a directed graph then there is an affiliated path groupoid
GE . The elements of GE are built out of infinite paths: sequences
of edges e1e2 . . . with s(ei ) = r(ei+1). The collection of such paths
is denoted E∞. There is for any integer k ≥ 0 a shift map on E∞:
σk (e1e2 . . .) = ek+1ek+2 . . ..

Definition

The path groupoid GE ⊂ E∞ × Z× E∞ consists of all triples
(x , n, y) such that there exist p, q with σpx = σqy and p − q = n.

The unit space of GE is identified with E∞.
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Groupoids

Let E be the graph

· · ·
γ4γ3γ2γ1

µ5

µ4

µ3

µ2

µ1

ξ2

ξ1

If x = µ1µ2µ3µ4µ5γ1γ2γ3 . . . and y = ξ1ξ2γ3 . . ., then the triple
(x , 5, y) belongs to GE because σ7x = σ2y .
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Groupoids

The path groupoid carries a natural topology with basis consisting
of all sets of the form

Z (α, β) = {(αz , |α| − |β|, βz) : α, β ∈ E ∗, r(z) = s(α) = s(β)},
where E ∗ denotes the finite path space. This topology makes GE

into a locally compact Hausdorff second countable étale groupoid,
so we can construct its groupoid C ∗-algebra.

Theorem (KPRR, ’98)

If E is a row-finite graph with no sources, then there is an
isomorphism C ∗(E )→ C ∗(GE ) which carries the edge partial
isometry se onto the characteristic function
χZ(e,s(e)) ∈ Cc(GE ) ⊂ C ∗(GE ).

Now we can study C ∗(E ) by studying GE : we look for conditions
on a groupoid that yield a continuous-trace algebra, and then
determine how E has to behave for GE to satisfy those conditions.
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Groupoids

Definition

Let G be a groupoid. If u ∈ G (0), the stabilizer subgroup of u is
the set G (u) = {g ∈ G : r(g) = u = s(g)}. A groupoid is
principal if G (u) = {u} for each u ∈ G (0).

If G is a groupoid then there is a principal groupoid
R = {(u, v) ∈ G (0) × G (0) : (u, v) = (r(g), s(g)) for some g ∈ G}
and a groupoid homomorphism π : G → R given by
π(g) = (r(g), s(g)). We call this the orbit groupoid of G . If G is a
nice topological groupoid then R is a topological groupoid carrying
the quotient topology.
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Groupoids

Any groupoid acts on its unit space via the formula

g · s(g) = r(g).

We say that a topological groupoid acts properly on its unit space
if the map

Φ : G → G (0) × G (0)

given by g → (r(g), s(g)) is proper.
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Groupoids

A toplogical groupoid G has continuously varying stabilizers if the
map u → G (u) which assigns to each unit its stabilizer subgroup is
continuous. (Here the set of stabilizer subgroups is topologized
with the Fell topology.)
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Now we can say when a groupoid yields a C ∗-algebra with
continuous trace.

Theorem (MRW, ’96)

Suppose that G is a second countable locally compact Hausdorff
groupoid with unit space G (0), abelian stabilizers, and Haar
system. Then C ∗(G ) has continuous trace if and only if

(1) the stabilizer map u 7→ G (u) is continuous, and

(2) the orbit groupoid R acts properly on its unit space
R(0) = G (0).

As C ∗(GE ) ∼= C ∗(E ) (when E is nice), determining which graphs
yield continuous-trace graph algebras is reduced to the question of
determining which graphs yield path groupoids satisfying the above
conditions.
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Definition

An entrance to a cycle λ = e1 . . . en is an edge f with r(f ) = r(ek )
for some k such that f 6= ek

v

v
w

w

e

f

Here’s a simple example of an entrance to a cycle.
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Proposition (Goehle, ’13)

Let E be a row-finite graph with no sources. Then GE has
continuously varying stabilizers if and only if no cycle of E has an
entrance.

Thus the only thing that remains is to find conditions on E that
ensure the orbit groupoid RE acts properly on E∞.
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Let v ,w be vertices. An ancestry pair is a pair of edges
(λ, µ) ∈ E ∗ × E ∗ such that

1 r(λ) = v ,r(µ) = w

2 s(µ) = s(λ),

3 neither path contains a cycle.

An ancestry pair is minimal if there is no factorization
(λ, µ) = (λ′ν, µ′ν) for another ancestry pair (λ′, µ′).

Definition

A graph has finite ancestry if given any two vertices v and w there
are only finitely many minimal ancestry pairs for v and w .
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· · ·
γ4γ3γ2γ1

µ5

µ4

µ3

µ2

µ1

ξ2

ξ1

Here (γ1γ2γ3, ξ2γ3) is an ancestry pair which is not minimal. The
ancestry pair (γ2, ξ2) is minimal.
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Theorem (C., ’13)

Let E be a row-finite graph with no sources. Then C ∗(E ) has
continuous trace if and only if

1 no cycle of E has an entrance, and

2 E has finite ancestry.

The restriction on E allows us to use groupoid methods. Using a
Drinen-Tomforde desingularization we can extend this to arbitrary
graphs.
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Theorem (C., ’13)

Let E be a graph. Then C ∗(E ) has continuous trace if and only

1 no cycle of E has an entrance, and

2 E has finite ancestry.
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Example

Let E be the graph

v

...
...

...

· · ·
e1

1

e1
2

f 1
1

f 1
2

e2
1

e2
2

f 2
1

f 2
2

e3
1

e3
2

f 3
1

f 3
2

g1 g2

It can be shown that C ∗(E ) has Hausdorff spectrum. While E has
no cycles, and hence no entrance to a cycle, it does not have finite
ancestry. Thus C ∗(E ) does not have continuous trace.
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Part II: Stable graph algebras

Dan Crytser Traces on graph algebras



Graph algebras
Continuous-trace graph algebras

Stable graph algebras

Stability
Stability of graph algebras

Stability

Tensor products are common in C ∗-algebras. Often you form from
a C ∗-algebra A its stabilization A⊗K, where K is the C ∗-algebra
of compact operators on an infinite dimensional Hilbert space.

Definition

A C ∗-algebra A is stable if it is isomorphic to A⊗K.

Dan Crytser Traces on graph algebras



Graph algebras
Continuous-trace graph algebras

Stable graph algebras

Stability
Stability of graph algebras

Stability

Tensor products are common in C ∗-algebras. Often you form from
a C ∗-algebra A its stabilization A⊗K, where K is the C ∗-algebra
of compact operators on an infinite dimensional Hilbert space.

Definition
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Example

The algebra K is stable because K ⊗K ∼= K.

Example

Any stable C ∗-algebra is non-commutative and non-unital, so we
get a wealth of non-stable C ∗-algebras: C0(X ),B(H), T , O2, and
others.
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There are two properties of stable C ∗-algebras that we will use
over and over.

A tracial state on a C ∗-algebra is a positive linear
functional φ of norm 1 such that φ(xy) = φ(yx) for all x , y ∈ A.

Lemma

Let A be a stable C ∗-algebra. Then A has no tracial states.

If I is a two-sided closed ideal in a C ∗-algebra then there is a
quotient C ∗-algebra A/I and a canonical homomorphism
q : A→ A/I .

Lemma

Let A be a stable C ∗-algebra. Then A has no nonzero unital
quotients.
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Question

What conditions must a graph E satisfy in order for C ∗(E ) to be
stable?
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Discussing stability of graph algebras requires some new graph
theory terminology.

Definition

A graph trace on a directed graph E is a function g : E 0 → [0,∞)
satisfying

1 g(v) ≥
∑

r(e)=v g(s(e)) for all v

2 g(v) =
∑

r(e)=v g(s(e)) if 0 < |r−1(v)| <∞
A graph trace is bounded if its norm

∑
v∈E 0 g(v) is finite. The

(possibly empty) set of graph traces on E with norm 1 is denoted
by T (E ).
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Tracial states on graph algebras

Graph traces lift to tracial states.

Theorem (Tomforde ’03)

If g ∈ T (E ) then there is a tracial state τg on C ∗(E ) such that
τg (pv ) = g(v).

Stable C ∗-algebras possess no tracial states. This shows that a
graph with bounded graph traces cannot yield a stable C ∗-algebra.
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Left finite vertices

Definition

If v ,w ∈ E 0, then we say that w ≤ v if there is a directed path
from v to w . We say that v is left finite if

L(v) = {w ∈ E 0 : w ≤ v}

is finite.

The following lemma tells us why we care about left finite vertices.
Recall that a singular vertex receives either zero edges or infinitely
many edges.

Lemma

If E has a left-finite vertex which lies on a cycle or is singular, then
C ∗(E ) has a nonzero unital quotient.
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Projection comparison

Definition

Let p, q be projections. We say that p is subequivalent to q if
there exists an element x such that x∗x = p and xx∗ ≤ q.

Usually we will be comparing different projections of the form
p =

∑
v∈V pv for some finite subset V ⊂ E 0.
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Statement of theorem

The following abridged theorem generalizes previous work of
Hjelmborg [3].

Theorem (Tomforde ’04)

Let E be a directed graph. Then the following are equivalent:

1 C ∗(E ) is stable.

2 C ∗(E ) has no tracial states and no nonzero unital quotients.

3 E has no left finite cycles and no nonzero bounded graph
traces.

4 For any v ∈ E 0 and any subset F ⊂ E 0, there exists
W ⊂ E 0 \ F such that pv .

∑
w∈W pw .
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Proof

One part of the theorem needs reproving: the implication from (4)
to (5).

4 E has no left finite cycles, no left finite singular vertices, and
no nonzero bounded graph traces.

5 For any v ∈ E 0 and any subset F ⊂ E 0, there exists
W ⊂ E 0 \ F such that pv .

∑
w∈W pw .

The implication (4) implies (5) is the hardest to prove. The proof
in the literature has a gap in it. I found a proof of this implication
that seems novel and is “low-tech.”
Idea of proof: Show that if we cannot construct the comparison
by using the “obvious” strategy, then the graph must carry a
bounded graph trace. First, let’s take a look at what this
“obvious” strategy might be.
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Comparison of range and source

For any directed path λ = e1e2 . . . en in a directed graph E , we
have a partial isometry sλ = se1se2 . . . sen . The partial isometry sλ
gives a subequivalence between ps(λ) and pr(λ), as s∗λsλ = ps(λ)

and sλs∗λ ≤ pr(λ).

Lemma

Suppose that v is a left infinite vertex and F ⊂ E 0 is a finite set.
Then there exists finite W ⊂ E 0 \ F such that pv .

∑
w∈W pw .

This allows us to restrict our attention to left finite vertices when
we are constructing graph traces later on.
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If pv is a vertex projection and F ⊂ E 0 then a cover for v that
avoids F is a set of vertices W with pv .

∑
w∈W pw and

W ∩ F = ∅.
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Example

Let E be the graph

v0 v1 v2 v3

. . .
e4e3e2e1

We can cover vertex v0 and avoid any finite F = {v0, v1, . . . , vn}.
For

pv = se1s∗e1
∼ s∗e1

se1 = pv1 = se2s∗e2
∼ s∗e2

se2 = pv2 ∼ . . . ∼ pvn+1 .

Thus pvn+1 is a cover for pv and we can take W = {vn+1}. Notice
that this graph does not carry a nonzero bounded graph trace.
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Example

Let E be the graph

v0 v1 v2 v3

. . .

e4e3e2e1

e′
4e′

3e′
2e′

1

Claim: we can’t cover v0 and avoid F = {v0}. We have
pv0 = se1s∗e1

+ se′1
s∗e′1

. Then se1s∗e1
∼ s∗e1

se1 = pv1 and likewise for

se′1
s∗e′1

. However we can’t write pv . pv1 + pv1 because the sum is

not a projection. So we cover one range projection and split the
other. But this lands us exactly where we started. This process
goes on forever. Note that this graph carries a bounded trace with
g(vi ) = 1

2i+1 .
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not a projection. So we cover one range projection and split the
other. But this lands us exactly where we started. This process
goes on forever.

Note that this graph carries a bounded trace with
g(vi ) = 1

2i+1 .
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Constructing the graph trace

Now let’s sketch the proof of

4 E has no left finite cycles, no left finite singular vertices, and
no nonzero bounded graph traces.

5 For any v ∈ E 0 and any subset F ⊂ E 0, there exists
W ⊂ E 0 \ F such that pv .

∑
w∈W pw .

Suppose that v is a regular vertex of E and F is a finite subset of
E 0 such that for all W ⊂ E 0, we have pv 6.

∑
w∈W pw .
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Constructing the graph trace

Assume that all N1 edges entering v have common source

v v1

N1

Then pv =
∑

r(e)=v ses∗e . Let d1 be the number of paths
λ1, . . . , λd1 which start at v1 and terminate at a vertex not in F .
If d1 ≥ N1, then we can write pv .

∑
w∈r({λi}) pw .

Thus we must have d1 < N1, or equivalently d1
N1
< 1.
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Constructing the graph trace, part II

Now assume we couldn’t find a comparison using edges going into
v .

v v1 v2

N1 N2

Let N2 be the number of edges from v2 to v1, and let d2 be the
number of paths which start at v2, don’t include the N1 edges
from v1 to v , and don’t terminate in F . If d2 ≥ N2(N1 − d1), then
we can construct the comparison. So we must have that
d2 < N2(N1 − d1), or equivalently that d1

N1
+ d2

N1N2
< 1.
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Definition of the graph trace

Inductively we find a chain of vertices v , v1, . . . with Ni vertices
from vi to vi−1, and di paths out of vi which do not terminate at a
vertex in F . The nice thing about this chain is

∞∑
i=1

di

N1 . . .Ni
< 1

If w ∈ E 0, define

g(w) =
∞∑

i=1

|{nice paths w ← vi}|
N1 . . .Ni

.

You can check that this is a graph trace. Bounded? Need to worry
about the paths which terminate in the finite set F , but they just
multiply the trace norm by a finite constant.
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Thus we have seen that the failure of comparison within a
C ∗-algebra associated to a graph with left infinite cycles and
singular vertices yields a nonzero graph trace on the graph, and
hence a tracial state on the C ∗-algebra. This seals the gap in the
theorem on stability for graph algebras.
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Stable k-graph algebras

Directed graphs can be generalized to more combinatorially rich
objects called k-graphs.

Definition

A k-graph Λ is a category equipped with a degree functor
d : Λ→ Nk which satisfies the factorization property: if
d(λ) = m + n for some m, n ∈ Nk , then there is a unique
factorization of λ as λ = µν with d(µ) = m and d(ν) = n. The
objects of Λ are precisely d−1(0) = Λ0. In general if n ∈ Nk , then
Λn denotes d−1(n).

We can assign a C ∗-algebra to a well-behaved k-graph in a manner
very similar to the definition of graph algebras. It then becomes
interesting to ask which k-graphs yield stable C ∗-algebras.
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Stable k-graph algebras

I wanted to look at a class of k-graphs which is amenable to the
construction of k-graph traces developed by Evans, Rennie and
Sims.

Definition

A k-graph is balanced if for any basis elements ei , ek ∈ Nk we have
|vΛei w | = |vΛek w |.

Theorem (work in progress)

Let Λ be a row-finite balanced k-graph with no sources. Then the
following are equivalent.

1 C ∗(Λ) is stable;

2 C ∗(Λ) has no tracial states and no nonzero unital quotients;

3 no left finite v ∈ Λ0 lies on a cycle and Λ has no nonzero
bounded k-graph traces.
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Stable k-graph algebras

The notion of a balanced k-graph above includes nice examples of
k-graphs, but it’s fairly restrictive.

I think that I can extend it to
vertex-balanced k-graphs: k-graphs in which every vertex receives
the same number of edges of degree ei for every basis element in
Nk . This class includes more interesting examples of k-graphs than
the balanced class. The combinatorics involved in constructing the
k-graph traces under failure of comparison becomes more
complicated.
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Thank you!
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