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Abstract. We present a physical proof of the Cauchy-Schwarz inequality shown by Tadashi
Tokieda during his special undergrad talk at Dartmouth on May 1, 2014.

1. Physics

Suppose that you have water separated into n layers, stacked vertically. Thus the first
layer touches the second layer, the second layer touches the first and third, and so on. The
first layer contains m1 kilograms of water, the second layer contains m2 kilograms, and so
on, so that the kth layer contains mk kilograms. Each layer begins with a velocity and we
will for simplicity’s sake assume that the motion of all the layers is parallel; that is, every
layer moves in the same direction as every other layer (with possibly different speeds). The
first layer has velocity v1 (meters per second), the second has velocity v2, and so on, so
that the kth layer has velocity vk. Let’s consider the initial momentum of the system. The
momentum of the system is the sum of the momenta of the parts, so

pi = m1v1 + m2v2 + . . . + mnvn.

Similarly we can consider the initial kinetic energy of the system. The kinetic energy of the
system adds over the parts, so

KEi =
1

2
m1(v1)

2 +
1

2
m2(v2)

2 + . . . +
1

2
mn(vn)2.

We allow the water to move without outside interference, so that no external force acts
upon the system. Here a few physical facts come into play.

(1) After a while all the layers move with common final velocity v.
(2) The momentum p of the system is conserved, so the initial momentum equals the

final momentum.
(3) The kinetic energy KE does not increase. Also, if two adjacent layers do not have

equal velocity, then the kinetic energy decreases because those layers will “grind”
against one another. (This energy changes into heat, I think.)

These are all the physical facts we need. The final momentum of the system is the sum
of the momenta of the layers, and each layer comes to move with velocity v. Thus

pf = m1v + m2v + . . . + mnv = (m1 + m2 + . . . + mn)v.

Conservation of momentum requires that pi = pf , so that we can solve for the final velocity
as

v =
m1v1 + m2v2 + . . . + mnvn

m1 + m2 + . . . + mn

.
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The final kinetic energy of the system is the sum of the kinetic energies of the individual
layers. Thus

KEf =
1

2
m1v

2 +
1

2
m2v

2 + . . . +
1

2
mnv

2.

We can rewrite this as

KEf =
1

2
(m1 + m2 + . . . + mn)−1(m1v1 + . . . + mnvn)2.

The diminution of kinetic energy tells us that KEf ≤ KEi. Mathematically this translates
to

(m1 + m2 + . . . + mn)−1(m1v1 + . . . + mnvn)2 ≤ m1(v1)
2 + m2(v2)

2 + . . . + mn(vn)2,

where we have canceled out the 1
2
. We multiply over the total mass and obtain the inequality

(m1v1 + . . . + mnvn)2 ≤ (m1 + . . . + mn)(m1v
2
1 + . . . + mnv

2
n),

from which we can extract square roots to obtain

|m1v + 1 + . . . + mnvn| ≤ (m1 + . . . + mn)1/2(m1v
2
1 + . . . + mnv

2
n)1/2.

This shows that for any choice of positive numbers m1, . . . ,mn and v1, . . . , vn, we have the
previous inequality. We can even relax the restriction on positive numbers to include negative
values. If a layer has a “negative” mass we let it run in the opposite direction, if it has a
negative velocity it also runs in the opposite direction, and if both the mass and velocity are
negative then we treat it the same.

Moreover, we have that

|m1v1 + . . . + mnvn| < (m1 + . . . + mn)1/2(m1v
2
1 + . . . + mnv

2
n)1/2

whenever two adjacent layers don’t have the same velocity. This is the same as requiring
that there be a constant k such that (v1, v2, . . . , vn) = (k, k, . . . , k).

2. The Cauchy-Schwarz Inequality

Theorem 1. Let x,y ∈ Rn. Then

|x · y| ≤ ||x||||y||
and |x · y| = ||x||||y|| exactly when {x,y} is linearly dependent.

Proof. Let x = (x1, x2, . . . , xn) and let y = (y1, y2, . . . , yn). We can set mi = x2
i and vi such

that yi =
√
mivi. This gives us a two lists of numbers m1,m2, . . . ,mn and v1, v2, . . . , vn just

as in the previous section. Thus we have

|m1v1 + . . . + mnvn| ≤ (m1 + . . . + mn)1/2(m1v
2
1 + . . . + mnv

2
n)1/2.

But mivi = xiyi, mi = x2
i and miv

2
i = y2i . So we can rewrite this inequality as

|xiyi + . . . + xnyn| ≤ (x2
1 + . . . + x2

n)1/2(y21 + . . . + y2n)1/2.

This is the inequality |x · y| ≤ ||x||||y||. The inequality is an equality exactly when there is
some constant k such that (v1, v2, . . . , vn) = (k, k, . . . , k). But then kxi = yi for all i, and
{x,y} is linearly dependent. So the inequality is an equality only if x and y are linearly
dependent. �
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