Ungraded Quiz + Questionnaire 3

Your name: \qquad
May 3, 2014

1. Let $V=\mathbb{P}_{2}$ and let $B=\left\{1, t, t^{2}\right\}$ be the standard basis for \mathbb{P}_{2}. Compute $\left[1-4 t+7 t^{2}\right]_{B}$.

If $1-4 t+7 t^{2}=c_{1}(1)+c_{2}(t)+c_{3}\left(t^{2}\right)$ then

$$
\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-4 \\
7
\end{array}\right]
$$

This is the B-coordinate vector $\left[1-4 t+7 t^{2}\right]_{B}$.
2. True or false: if B and C are (finite) bases for the vector space V, then the change of basis matrix $C \stackrel{P}{\leftarrow} B$ is invertible. (The inverse is the change of basis matrix going in the other direction, $B \stackrel{P}{\leftarrow} C$.)
3. Compute the rank of the matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
3 & 6 \\
-4 & -8
\end{array}\right]
$$

We can row reduce by subtracting multiples of row 1 from the other two rows.

$$
A=\left[\begin{array}{cc}
1 & 2 \\
3 & 6 \\
-4 & -8
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

There is one pivot column so the rank of the matrix is 1 .
4. Is $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ an eigenvector of the matrix $A=\left[\begin{array}{cc}2 & -2 \\ -7 & 7\end{array}\right]$? If so, find the corresponding eigenvalue. It is an eigenvector with eigenvalue 0.

$$
A \mathbf{v}=\left[\begin{array}{cc}
2 & -2 \\
-7 & 7
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0 \mathbf{v}
$$

Note that it is entirely okay for the eigenvalue to be 0 , so long as the eigenvector \mathbf{v} is nonzero.

