Ungraded Quiz + Questionnaire 3

Your name: \qquad
April 25, 2014

1. Is $\{1, t\}$ a basis for the vector space \mathbb{P}_{2} of all polynomials with degree ≤ 2 ?

NO. Any basis for \mathbb{P}_{2} has three elements, because the basis $\left\{1, t, t^{2}\right\}$ has three elements. Thus $\{1, t\}$ is not a basis for \mathbb{P}_{2}.
2. True or false: if B is a basis for V and $\mathbf{v} \in V$, then for any scalar $c \in \mathbb{R},[c \mathbf{v}]_{B}=[\mathbf{v}]_{B}$.

MOST EXCEEDINGLY FALSE. In general we have $[c \mathbf{v}]_{B}=c[\mathbf{v}]_{B}$; this corresponds to the fact that sending a vector in V to its B-coordinates is a linear transformation. For example, if $V=\mathbb{P}_{2}$ and $B=\left\{1, t, t^{2}\right\}$, then $\left[1+2 t+3 t^{2}\right]_{B}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[10\left(1+2 t+3 t^{2}\right)\right]_{B}=\left[\begin{array}{l}10 \\ 20 \\ 30\end{array}\right]$.
3. Let A be a matrix with one million rows and 2017 columns. Is it possible that dim nul $A=100$ and $\operatorname{dim} \operatorname{col} A=200$?

IMPOSSIBLE. If A has 2017 columns then

$$
\operatorname{dim} \operatorname{nul} A+\operatorname{dim} \operatorname{col} A=2017
$$

A notable fact about the numbers 200 and 200 is that their sum is not 2017. Thus we cannot have both $\operatorname{dim} \operatorname{nul} A=100$ and $\operatorname{dim} \operatorname{col} A=200$.

