Ungraded Quiz + Questionnaire 3

Your name: _____

April 18, 2014

1. If V is a vector space and $H \subset V$ is a subspace, can you always subtract vectors in H? That is, if $u, v \in H$, does $u - v \in H$? Why? Yes. If $u, v \in H$, then $-v \in H$. Then we have $u + (-v) = u - v \in H$.

- 2. True or false: the determinant of a matrix does not change after your perform elementary row operations. False. It changes after an interchange or a row scaling (if the determinant is nonzero).
- 3. Let $V = \mathbb{R}^2$ and consider $H = \{(x, y) \in V | xy = 0\}$. Sketch H. Is H a subspace of \mathbb{R}^2 ?

A vector $v \in \mathbb{R}^2$ belongs to H if at least one of its coordinates is 0. If you sketch V then you get exactly the x- and y-axes. The subspace H does not equal the whole plane: $(1,1) \in V$ but $(1)(1) \neq 0$, so that $(1,1) \notin H$. H is **not a subspace** of \mathbb{R}^2 : while it contains the zero vector and is closed under scalar multiplication ((cx)(cy) = 0 for any scalar c if xy = 0), H is not closed under addition. That is, you can write down a pair of vectors in H whose sum is not in H. The two standard basis vectors, for example: (1,0) and (0,1) both lie in H, as (1)(0) = 0 = (0)(1). But their sum is (1,1), which does not lie in H.