Ungraded Quiz + Questionnaire 3

Your name: \qquad
April 18, 2014

1. If V is a vector space and $H \subset V$ is a subspace, can you always subtract vectors in H ? That is, if $u, v \in H$, does $u-v \in H$? Why? Yes. If $u, v \in H$, then $-v \in H$. Then we have $u+(-v)=u-v \in H$.
2. True or false: the determinant of a matrix does not change after your perform elementary row operations. False. It changes after an interchange or a row scaling (if the determinant is nonzero).
3. Let $V=\mathbb{R}^{2}$ and consider $H=\{(x, y) \in V \mid x y=0\}$. Sketch H. Is H a subspace of \mathbb{R}^{2} ?

A vector $v \in \mathbb{R}^{2}$ belongs to H if at least one of its coordinates is 0 . If you sketch V then you get exactly the x - and y-axes. The subspace H does not equal the whole plane: $(1,1) \in V$ but $(1)(1) \neq 0$, so that $(1,1) \notin H$. H is not a subspace of \mathbb{R}^{2} : while it contains the zero vector and is closed under scalar multiplication $((c x)(c y)=0$ for any scalar c if $x y=0), H$ is not closed under addition. That is, you can write down a pair of vectors in H whose sum is not in H. The two standard basis vectors, for example: $(1,0)$ and $(0,1)$ both lie in H, as $(1)(0)=0=(0)(1)$. But their sum is $(1,1)$, which does not lie in H.

