Ungraded Quiz $2+$ Questionnaire 2

Your name: \qquad
April 7, 2014

1. Is the system

$$
\begin{aligned}
2000293 x+9323909 y+2014 z & =0 \\
323123 x-\quad 407 y+2187 z & =0
\end{aligned}
$$

consistent?

Yes. It is a homogeneous system, and homogeneous systems are always consistent (the zero vector is a solution).
2. A non-trivial solution to a homogeneous system $A \mathbf{x}=\mathbf{0}$ is a vector \mathbf{v} such that $A \mathbf{v}=\mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$.
3. True or false: if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly dependent set in \mathbb{R}^{3}, then one of the vectors is scalar multiple of one of the other vectors.

False. We saw in class that this need not be the case $(1,0,0),(0,1,0),(1,1,0)$ is a linearly dependent set in \mathbb{R}^{3} no element of which is a scalar multiple of another element.
4. Is the following set of vectors linearly dependent or linearly independent? Why? Let A have these vectors as columns. Then A has fewer rows than columns, so that not every column of A contains a pivot position. Thus the solution to $A \mathbf{x}=\mathbf{0}$ always has a free variable.

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
35 \\
0 \\
1000
\end{array}\right],\left[\begin{array}{c}
-20455 \\
9384 \\
10
\end{array}\right],\left[\begin{array}{c}
1432 \\
20 \\
1111
\end{array}\right]\right\}
$$

