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Today’s lecture

1 We will use matrices to describe population trends.

2 We will embark on the study of matrix algebra: subject of
adding, scaling, and multiplying matrices.

3 We will learn some tricks to compute or partially compute
matrix products.

4 We will define the transpose of a matrix.
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Difference equations

In many situations you will be measuring some system and all the
information about the system at time k will be contained in some
vector xk .

(Could be age, salary, population, microbe count,
whatever).

Definition

Suppose your data take the form of vectors xk ∈ Rn, where
k = 0, 1, 2, . . .s. If there is an n × n matrix A such that
x1 = Ax0, x2 = Ax1 and generally xk+1 = Axk (*) , we say that
equation (*) is a linear difference equation (some people call it a
recursion relation, because it gives new measurement in terms of
the old measurement).

Dan Crytser Lecture 9: Intro to matrix algebra. Inverses.



Difference equations

In many situations you will be measuring some system and all the
information about the system at time k will be contained in some
vector xk . (Could be age, salary, population, microbe count,
whatever).

Definition

Suppose your data take the form of vectors xk ∈ Rn, where
k = 0, 1, 2, . . .s. If there is an n × n matrix A such that
x1 = Ax0, x2 = Ax1 and generally xk+1 = Axk (*) , we say that
equation (*) is a linear difference equation

(some people call it a
recursion relation, because it gives new measurement in terms of
the old measurement).

Dan Crytser Lecture 9: Intro to matrix algebra. Inverses.



Difference equations

In many situations you will be measuring some system and all the
information about the system at time k will be contained in some
vector xk . (Could be age, salary, population, microbe count,
whatever).

Definition

Suppose your data take the form of vectors xk ∈ Rn, where
k = 0, 1, 2, . . .s. If there is an n × n matrix A such that
x1 = Ax0, x2 = Ax1 and generally xk+1 = Axk (*) , we say that
equation (*) is a linear difference equation (some people call it a
recursion relation, because it gives new measurement in terms of
the old measurement).

Dan Crytser Lecture 9: Intro to matrix algebra. Inverses.



Difference equations and population

You can study population dynamics using difference
equations.

Let’s say that in the nation of Zembla there is one city
and one suburb. The population distribution in Zembla in year 0
can be recorded in a vector in R2:

x0 =

[
r0
s0

]
where r0 is the population in the city in year 0 and s0 is the
population in the suburb in year 0. The vectors

x1 =

[
r1
s1

]
, x2 =

[
r2
s2

]
record the popluation distribution in year

1, year 2, etc.
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Difference equations and population

Let’s say that in any one year 95 percent of city people remain in
the city and 5 percent of city people go to the suburb.

Let’s say in
the same time frame, 97 percent of suburb people remain in the
suburb and 3 percent go to the city.
Thus, after year 0 we can see what the population looks like in
year 1:

r1 = .95r0 + .03s0

and
s1 = .5r0 + .97s0

Thus[
r1
s1

]
= r0

[
.95
.05

]
+ s0

[
.03
.97

]
=

[
.95 .03
.05 .97

] [
r0
s0

]
.
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The Transition Matrix

Now we can write down

x1 =

[
.95 .03
.05 .97

]
x0

and

x2 =

[
.95 .03
.05 .97

]
x1

and, in general,

xk =

[
.95 .03
.05 .97

]
xk−1.

If A is the matrix above, then we can write xk = Axk−1. You can
use this to predict the future. (Kinda.)
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Matrix algebra

Matrix algebra is like regular algebra, except instead of adding and
multiplying real numbers, you add and multiply matrices.
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Matrix notation

We will often write a matrix A as [aij ]. Here aij stands for the
entry of A in row i and column j .

This allows us to specify entries
of A. So if

A = [aij ] =

[
1 2 3
4 5 6

]
,

then a23 is 6. In this case a41 does not make sense, because there
is no fourth row of A.
We use this notation because it allows us to define operations on
matrices very neatly.
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Addition of matrices

Definition

Let A = [aij ] and B = [bij ] be two m × n matrices.

Then

A + B := [aij + bij ];

that is, A + B is the m × n matrix whose (i , j)-th entry is aij + bij .

Example

Let

A =

 1 7
2 3
−1 −1

B =

 0 3
1 2
5 2

 .

These matrices are the same size (number of rows, cols) so we can
add them.

A + B =

 1 10
3 5
4 1

 .
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Scalar multiplication of matrices

You can scale matrices by real numbers.

Definition

Let A = [aij ] be an m × n matrix and let c ∈ R be a scalar. Then
the scalar multiple cA is defined

cA = [caij ].

That is, the (i , j)-th entry of cA is c times the (i , j)-th entry of A.

Example

Let

A =

[
1 −1 2
3 1 4

]
c = 2.

Then

2A =

[
2 · 1 2 · −1 2 · 2
2 · 3 2 · 1 2 · 4

]
=

[
2 −2 4
6 2 8

]
.
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Row-column multiplication of Ax

Fact

Let A be an m × n matrix and let x ∈ Rn. Then

Ax =


a11x1 + a12x2 + . . . + a1nxn
a21x1 + a22x2 + . . . + a2nxn

...
am1x1 + am2x2 + . . . + amnxn

 .

Example

Let

A =

[
1 0 2
5 −1 −1

]
x =

 1
3
3

 .

Then using the above rule we compute very quickly that

Ax =

[
(1)(1) + (0)(3) + (2)(3)

(5)(1) + (−1)(3) + (−1)(3)

]
=

[
7
−1

]
.
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Composing functions

You can multiply two matrices together to get a new matrix. To
see where the definition of the matrix product comes from, let’s
consider the notion of composition of functions.

Definition

Let T : Rn → Rm and S : Rm → Rp be two functions between
vector spaces. Then the composition is the function
S ◦ T : Rn → Rp which is given by the rule

(S ◦ T )(x) = S(T (x))

for all x ∈ Rn.

Since multiplying by matrices is equivalent to applying linear
transformations, we can define the product matrix to be the the
matrix corresponding to the composition of the linear
transformations.
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Visualization of composition
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Composing linear transformations

The following fact comes from the definition of the product Ax:

Fact

Let A be an m × n matrix. Then the kth column of A is just Aek ,
where ek ∈ Rn is the kth standard basis vector

We don’t know what AB means yet, but we definitely want

(AB)x to equal A(Bx)

for all x ∈ Rn. If we feed in standard basis vectors for x, we get

kth column of (AB) = ABek = ek = A(Bek) = A(k-th column of B).

Thus we can compute the kth column of AB by multiplying the
kth column of B by A.
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Multiplying matrices

Definition

Let A be an n ×m matrix and let B =
[
b1 b2 . . . bp

]
be an

m× p matrix.

Then the product AB is the n× p matrix defined by

AB =
[

Ab1 Ab2 . . . Abp
]
,

where Abk the product of A and the k-th column vector of B.
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Example of multiplication

Compute AB for A =

[
1 0 9
−2 −3 4

]
and B =

 2 2
−1 3
1 4

.

The

columns of B are b1 =

 2
−1
1

 and b2 =

 2
3
4

. The A-column

of B products are

Ab1 =

[
1 0 9
−2 −3 4

] 2
−1
1

 =

[
11
3

]

Ab2 =

[
1 0 9
−2 −3 4

] 2
3
4

 =

[
38
3

]
Thus the product is

AB =
[

Ab1 Ab2
]

=

[
11 38
3 3

]
.
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When can you multiply two matrices?

We have defined the product AB of the as

AB =
[

Ab1 Ab2 . . . Abn
]
,

where n is the number of columns of B.

This is only defined when
the products Abk are defined. Thus the number of entries in any
column of B has to equal the number of columns of A.

Fact

Let A be an n ×m matrix and let B be a p × q matrix. Then AB
is defined exactly when m = p.

Can we form the product AB if A is 2× 4 and B is 4× 5? What
about BA for such A and B? What does this say about the
products AB and BA for matrices?
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Computing the product

There is a helpful rule for computing individual entries of a matrix
product AB.

Fact

If A is an m × n matrix and B is an n × p matrix, then the
(i , j)-entry of AB, for 1 ≤ i ≤ m and 1 ≤ j ≤ p, is defined by

(AB)ij = ai1b1j + ai2b2j + . . . + ainbnj =
n∑

k=1

aikbkj .

Those of you familiar with dot products/inner products will
recognize this as the dot product of the ith row of A with the jth
column of B.
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Row-column: example

The row-column rule is useful in extracting entries from products
that are unwieldy to fully compute.

Example

Let A =

[
15 −8 20 30 2
−4 7 13 11 6

]
and

B =


1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35

 .

Then the product AB is a 2× 7 matrix. What is the (2, 4)-th
entry? Just add up the products of the entries in the 2nd row of A
and the 4th column of B.

(AB)2,4 = (−4)(4)+(7)(11)+(13)(18)+(11)(25)+(6)(32) = 762.
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Then the product AB is a 2× 7 matrix. What is the (2, 4)-th
entry? Just add up the products of the entries in the 2nd row of A
and the 4th column of B.

(AB)2,4 = (−4)(4)+(7)(11)+(13)(18)+(11)(25)+(6)(32) = 762.

Dan Crytser Lecture 9: Intro to matrix algebra. Inverses.



Row-column: example

The row-column rule is useful in extracting entries from products
that are unwieldy to fully compute.

Example

Let A =

[
15 −8 20 30 2
−4 7 13 11 6

]
and

B =


1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35

 .

Then the product AB is a 2× 7 matrix. What is the (2, 4)-th
entry?

Just add up the products of the entries in the 2nd row of A
and the 4th column of B.

(AB)2,4 = (−4)(4)+(7)(11)+(13)(18)+(11)(25)+(6)(32) = 762.

Dan Crytser Lecture 9: Intro to matrix algebra. Inverses.



Row-column: example

The row-column rule is useful in extracting entries from products
that are unwieldy to fully compute.

Example

Let A =

[
15 −8 20 30 2
−4 7 13 11 6

]
and

B =


1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35

 .

Then the product AB is a 2× 7 matrix. What is the (2, 4)-th
entry? Just add up the products of the entries in the 2nd row of A
and the 4th column of B.

(AB)2,4 = (−4)(4)+(7)(11)+(13)(18)+(11)(25)+(6)(32) = 762.
Dan Crytser Lecture 9: Intro to matrix algebra. Inverses.



Rows in products

Let A be an m × n matrix and B be a n × p matrix.

We can use
the rule

(AB)i ,j =
n∑

k=1

aikbkj

to write the ith row of AB as

rowi (AB) =
[

(
∑n

k=1 aikbk1) (
∑n

k=1 aikbk2) . . . (
∑n

k=1 aikbkp)
]

You can check that this is equal to the product

[
ai1 ai2 . . . ain

]


b11 b12 . . . b1p

b21 b22 . . . b2p
...

...
...

...
bn1 bn2 . . . bnp

 = rowi (A) · B.
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Properties of matrix multiplication

Matrix multiplication “inherits” a lot of the nice properties of
matrix-vector products.

Definition

Here and in every possible future lecture, for any integer m ≥ 1 we
denote by Im the m ×m identity matrix

Im =


1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1


which is the unique matrix which satisfies Imx = x for all x ∈ Rm.
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Properties of matrix multiplication

Theorem

Let A be an m × n matrix, and let B and C have sizes for which
the products below are defined.

1 A(BC ) = (AB)C (associativity of matrix mult.)

2 A(B + C ) = AB + AC (left distribution)

3 (A + B)C = AC + BC (right distribution)

4 r(AB) = (rA)B = A(rB) for any scalar r ∈ R
5 ImA = A = AIn (multiplicative identity)

Proof.

If you want to check an equation of matrices it’s generally easiest
to show that the entries are the same. You can do this for all the
above identities using the row-column rule for computing entries in
matrix products.
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Non-commutative algebra

If you multiply two real numbers x and y , then they commute:

xy = yx .

It is very noteworthy that this does not happen when you multiply
matrices. As we saw, the product AB may be defined while the
product BA is not. But even when AB and BA are both defined
(which, on thinking, forces A and B to be square matrices of the
same size), they need not be equal.

Example

Let A =

[
0 0
1 0

]
and B =

[
0 1
0 0

]
. Then

AB =

[
0 0
1 0

] [
0 1
0 0

]
=

[
0 0
0 1

]

BA =

[
0 1
0 0

] [
0 0
1 0

]
=

[
1 0
0 0

]
.
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Other weird things about matrix multiplication

There are other weird things about matrix multiplication:

1 You can have AB = AC or BA = CA and yet B 6= C .

For

example, if A =

[
1 0
0 0

]
, then I2A = AA, and yet I2 6= A.

2 You can have AB = 0 with both A and B nonzero. For

example A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
.
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Powers of a matrix

The only time we can multiply a matrix A by itself and form the
product AA is if the number of columns of A equals the number of
rows of A, i.e. A is a square matrix.

In the case that A is a
square matrix, we can multiply it by itself any (positive) number k
of times:

Ak = A · · ·A︸ ︷︷ ︸
k

.

Example

Let A =

[
2 2
0 0

]
. Then you can check that for any integer k ≥ 1

Ak =

[
2k 2k

0 0

]
.
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Transpose

There is a kinda obvious operation that you can do with matrices
that we are going to use a lot later.

Definition

Let A be an m × n matrix. Then the transpose of A is the n ×m
matrix (note the reversal) denoted by AT with (AT )ij := Aji . That
is, the (i , j)-entry of AT is the (j , i)-entry of A.

Put less fancily, the transpose is what you get when you “flip” the
matrix along the diagonal.

Example

Let A =

[
1 2 3 4
5 6 7 8

]
. Then AT =


1 5
2 6
3 7
4 8

.
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Properties of transpose

There’s a bunch of simple properties of the tranpose operation
A 7→ AT that we record for posterity’s sake.

Theorem

Let A and B denote matrices, where in each case the sums or
products are defined as they need to be.

1 (AT )T = A (flip twice, get back where you started)

2 (A + B)T = AT + BT

3 For any scalar, (rA)T = r(AT )

4 (AB)T = BTAT

Most of these are really straightforward computations on entries
[aij ]. The last one is a little bit of work, and it’s worth
remembering that in general

(AB)T 6= ATBT .
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