Lecture 9：Intro to matrix algebra．Inverses．

Danny W．Crytser

April 9， 2014

(1) We will use matrices to describe population trends.

Today's lecture

(1) We will use matrices to describe population trends.
(2) We will embark on the study of matrix algebra: subject of adding, scaling, and multiplying matrices.

Today's lecture

(1) We will use matrices to describe population trends.
(2) We will embark on the study of matrix algebra: subject of adding, scaling, and multiplying matrices.
(3) We will learn some tricks to compute or partially compute matrix products.

Today's lecture

(1) We will use matrices to describe population trends.
(2) We will embark on the study of matrix algebra: subject of adding, scaling, and multiplying matrices.
(3) We will learn some tricks to compute or partially compute matrix products.
(9) We will define the transpose of a matrix.

Today's lecture

(1) We will use matrices to describe population trends.
(2) We will embark on the study of matrix algebra: subject of adding, scaling, and multiplying matrices.
(3) We will learn some tricks to compute or partially compute matrix products.
(9) We will define the transpose of a matrix.

Difference equations

In many situations you will be measuring some system and all the information about the system at time k will be contained in some vector \mathbf{x}_{k}.

Difference equations

In many situations you will be measuring some system and all the information about the system at time k will be contained in some vector \mathbf{x}_{k}. (Could be age, salary, population, microbe count, whatever).

Definition

Suppose your data take the form of vectors $\mathbf{x}_{k} \in \mathbb{R}^{n}$, where $k=0,1,2, \ldots$. If there is an $n \times n$ matrix A such that $\mathbf{x}_{1}=A \mathbf{x}_{0}, \mathbf{x}_{2}=A \mathbf{x}_{1}$ and generally $\mathbf{x}_{k+1}=A \mathbf{x}_{k}\left(^{*}\right)$, we say that equation $\left(^{*}\right)$ is a linear difference equation

Difference equations

In many situations you will be measuring some system and all the information about the system at time k will be contained in some vector \mathbf{x}_{k}. (Could be age, salary, population, microbe count, whatever).

Definition

Suppose your data take the form of vectors $\mathbf{x}_{k} \in \mathbb{R}^{n}$, where $k=0,1,2, \ldots$. If there is an $n \times n$ matrix A such that $\mathbf{x}_{1}=A \mathbf{x}_{0}, \mathbf{x}_{2}=A \mathbf{x}_{1}$ and generally $\mathbf{x}_{k+1}=A \mathbf{x}_{k}\left({ }^{*}\right)$, we say that equation $\left(^{*}\right)$ is a linear difference equation (some people call it a recursion relation, because it gives new measurement in terms of the old measurement).

Difference equations and population

You can study population dynamics using difference equations.

Difference equations and population

You can study population dynamics using difference equations.Let's say that in the nation of Zembla there is one city and one suburb. The population distribution in Zembla in year 0 can be recorded in a vector in \mathbb{R}^{2} :

Difference equations and population

You can study population dynamics using difference equations.Let's say that in the nation of Zembla there is one city and one suburb. The population distribution in Zembla in year 0 can be recorded in a vector in \mathbb{R}^{2} :

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
r_{0} \\
s_{0}
\end{array}\right]
$$

Difference equations and population

You can study population dynamics using difference equations.Let's say that in the nation of Zembla there is one city and one suburb. The population distribution in Zembla in year 0 can be recorded in a vector in \mathbb{R}^{2} :

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
r_{0} \\
s_{0}
\end{array}\right]
$$

where r_{0} is the population in the city in year 0 and s_{0} is the population in the suburb in year 0 .

Difference equations and population

You can study population dynamics using difference equations.Let's say that in the nation of Zembla there is one city and one suburb. The population distribution in Zembla in year 0 can be recorded in a vector in \mathbb{R}^{2} :

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
r_{0} \\
s_{0}
\end{array}\right]
$$

where r_{0} is the population in the city in year 0 and s_{0} is the population in the suburb in year 0 . The vectors $\mathbf{x}_{1}=\left[\begin{array}{l}r_{1} \\ s_{1}\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}r_{2} \\ s_{2}\end{array}\right]$ record the popluation distribution in year 1 , year 2, etc.

Difference equations and population

Let's say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb.

Difference equations and population

Let's say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb. Let's say in the same time frame, 97 percent of suburb people remain in the suburb and 3 percent go to the city.

Difference equations and population

Let's say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb. Let's say in the same time frame, 97 percent of suburb people remain in the suburb and 3 percent go to the city.
Thus, after year 0 we can see what the population looks like in year 1 :

$$
r_{1}=.95 r_{0}+.03 s_{0}
$$

and

$$
s_{1}=.5 r_{0}+.97 s_{0}
$$

Difference equations and population

Let's say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb. Let's say in the same time frame, 97 percent of suburb people remain in the suburb and 3 percent go to the city.
Thus, after year 0 we can see what the population looks like in year 1 :

$$
r_{1}=.95 r_{0}+.03 s_{0}
$$

and

$$
s_{1}=.5 r_{0}+.97 s_{0}
$$

Thus

$$
\left[\begin{array}{l}
r_{1} \\
s_{1}
\end{array}\right]=
$$

Difference equations and population

Let's say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb. Let's say in the same time frame, 97 percent of suburb people remain in the suburb and 3 percent go to the city.
Thus, after year 0 we can see what the population looks like in year 1 :

$$
r_{1}=.95 r_{0}+.03 s_{0}
$$

and

$$
s_{1}=.5 r_{0}+.97 s_{0}
$$

Thus

$$
\left[\begin{array}{l}
r_{1} \\
s_{1}
\end{array}\right]=r_{0}\left[\begin{array}{l}
.95 \\
.05
\end{array}\right]+s_{0}\left[\begin{array}{l}
.03 \\
.97
\end{array}\right]
$$

Difference equations and population

Let's say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb. Let's say in the same time frame, 97 percent of suburb people remain in the suburb and 3 percent go to the city.
Thus, after year 0 we can see what the population looks like in year 1 :

$$
r_{1}=.95 r_{0}+.03 s_{0}
$$

and

$$
s_{1}=.5 r_{0}+.97 s_{0}
$$

Thus

$$
\left[\begin{array}{l}
r_{1} \\
s_{1}
\end{array}\right]=r_{0}\left[\begin{array}{l}
.95 \\
.05
\end{array}\right]+s_{0}\left[\begin{array}{l}
.03 \\
.97
\end{array}\right]=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right]\left[\begin{array}{l}
r_{0} \\
s_{0}
\end{array}\right] .
$$

The Transition Matrix

Now we can write down

$$
\mathbf{x}_{1}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{0}
$$

Now we can write down

$$
\mathbf{x}_{1}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{0}
$$

and

$$
\mathbf{x}_{2}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{1}
$$

Now we can write down

$$
\mathbf{x}_{1}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{0}
$$

and

$$
\mathbf{x}_{2}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{1}
$$

and, in general,

$$
\mathbf{x}_{k}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{k-1} .
$$

Now we can write down

$$
\mathbf{x}_{1}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{0}
$$

and

$$
\mathbf{x}_{2}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{1}
$$

and, in general,

$$
\mathbf{x}_{k}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{k-1} .
$$

If A is the matrix above, then we can write $\mathbf{x}_{k}=A \mathbf{x}_{k-1}$.

Now we can write down

$$
\mathbf{x}_{1}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{0}
$$

and

$$
\mathbf{x}_{2}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{1}
$$

and, in general,

$$
\mathbf{x}_{k}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{k-1} .
$$

If A is the matrix above, then we can write $\mathbf{x}_{k}=A \mathbf{x}_{k-1}$. You can use this to predict the future.

Now we can write down

$$
\mathbf{x}_{1}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{0}
$$

and

$$
\mathbf{x}_{2}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{1}
$$

and, in general,

$$
\mathbf{x}_{k}=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \mathbf{x}_{k-1} .
$$

If A is the matrix above, then we can write $\mathbf{x}_{k}=A \mathbf{x}_{k-1}$. You can use this to predict the future. (Kinda.)

Matrix algebra

Matrix algebra is like regular algebra, except instead of adding and multiplying real numbers, you add and multiply matrices.

Matrix notation

We will often write a matrix A as $\left[a_{i j}\right]$. Here $a_{i j}$ stands for the entry of A in row i and column j.

Matrix notation

We will often write a matrix A as $\left[a_{i j}\right]$. Here $a_{i j}$ stands for the entry of A in row i and column j. This allows us to specify entries of A. So if

$$
A=\left[a_{i j}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

Matrix notation

We will often write a matrix A as $\left[a_{i j}\right]$. Here $a_{i j}$ stands for the entry of A in row i and column j. This allows us to specify entries of A. So if

$$
A=\left[a_{i j}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

then a_{23} is 6 .

Matrix notation

We will often write a matrix A as $\left[a_{i j}\right]$. Here $a_{i j}$ stands for the entry of A in row i and column j. This allows us to specify entries of A. So if

$$
A=\left[a_{i j}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

then a_{23} is 6 . In this case a_{41} does not make sense, because there is no fourth row of A.

Matrix notation

We will often write a matrix A as $\left[a_{i j}\right]$. Here $a_{i j}$ stands for the entry of A in row i and column j. This allows us to specify entries of A. So if

$$
A=\left[a_{i j}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

then a_{23} is 6 . In this case a_{41} does not make sense, because there is no fourth row of A.
We use this notation because it allows us to define operations on matrices very neatly.

Addition of matrices

Definition

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be two $m \times n$ matrices.

Addition of matrices

Definition

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be two $m \times n$ matrices. Then

$$
A+B:=\left[a_{i j}+b_{i j}\right] ;
$$

that is, $A+B$ is the $m \times n$ matrix whose (i, j)-th entry is $a_{i j}+b_{i j}$.

Addition of matrices

Definition

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be two $m \times n$ matrices. Then

$$
A+B:=\left[a_{i j}+b_{i j}\right] ;
$$

that is, $A+B$ is the $m \times n$ matrix whose (i, j)-th entry is $a_{i j}+b_{i j}$.

Example

Let

$$
A=\left[\begin{array}{cc}
1 & 7 \\
2 & 3 \\
-1 & -1
\end{array}\right] B=\left[\begin{array}{ll}
0 & 3 \\
1 & 2 \\
5 & 2
\end{array}\right]
$$

Addition of matrices

Definition

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be two $m \times n$ matrices. Then

$$
A+B:=\left[a_{i j}+b_{i j}\right] ;
$$

that is, $A+B$ is the $m \times n$ matrix whose (i, j)-th entry is $a_{i j}+b_{i j}$.

Example

Let

$$
A=\left[\begin{array}{cc}
1 & 7 \\
2 & 3 \\
-1 & -1
\end{array}\right] B=\left[\begin{array}{ll}
0 & 3 \\
1 & 2 \\
5 & 2
\end{array}\right]
$$

These matrices are the same size (number of rows, cols) so we can add them.

Addition of matrices

Definition

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be two $m \times n$ matrices. Then

$$
A+B:=\left[a_{i j}+b_{i j}\right] ;
$$

that is, $A+B$ is the $m \times n$ matrix whose (i, j)-th entry is $a_{i j}+b_{i j}$.

Example

Let

$$
A=\left[\begin{array}{cc}
1 & 7 \\
2 & 3 \\
-1 & -1
\end{array}\right] B=\left[\begin{array}{ll}
0 & 3 \\
1 & 2 \\
5 & 2
\end{array}\right]
$$

These matrices are the same size (number of rows, cols) so we can add them.

$$
A+B=\left[\begin{array}{cc}
1 & 10 \\
3 & 5 \\
4 & 1
\end{array}\right]
$$

Scalar multiplication of matrices

You can scale matrices by real numbers.

Scalar multiplication of matrices

You can scale matrices by real numbers.

Definition

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix and let $c \in \mathbb{R}$ be a scalar. Then the scalar multiple $c A$ is defined

$$
c A=\left[c a_{i j}\right] .
$$

Scalar multiplication of matrices

You can scale matrices by real numbers.

Definition

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix and let $c \in \mathbb{R}$ be a scalar. Then the scalar multiple $c A$ is defined

$$
c A=\left[c a_{i j}\right] .
$$

That is, the (i, j)-th entry of $c A$ is c times the (i, j)-th entry of A.

Scalar multiplication of matrices

You can scale matrices by real numbers.

Definition

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix and let $c \in \mathbb{R}$ be a scalar. Then the scalar multiple $c A$ is defined

$$
c A=\left[c a_{i j}\right] .
$$

That is, the (i, j)-th entry of $c A$ is c times the (i, j)-th entry of A.

Example

Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 1 & 4
\end{array}\right] \quad c=2
$$

Scalar multiplication of matrices

You can scale matrices by real numbers.

Definition

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix and let $c \in \mathbb{R}$ be a scalar. Then the scalar multiple $c A$ is defined

$$
c A=\left[c a_{i j}\right] .
$$

That is, the (i, j)-th entry of $c A$ is c times the (i, j)-th entry of A.

Example

Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 1 & 4
\end{array}\right] \quad c=2
$$

Then

$$
2 A=\left[\begin{array}{ccc}
2 \cdot 1 & 2 \cdot-1 & 2 \cdot 2 \\
2 \cdot 3 & 2 \cdot 1 & 2 \cdot 4
\end{array}\right]=
$$

Scalar multiplication of matrices

You can scale matrices by real numbers.

Definition

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix and let $c \in \mathbb{R}$ be a scalar. Then the scalar multiple $c A$ is defined

$$
c A=\left[c a_{i j}\right] .
$$

That is, the (i, j)-th entry of $c A$ is c times the (i, j)-th entry of A.

Example

Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 1 & 4
\end{array}\right] \quad c=2
$$

Then

$$
2 A=\left[\begin{array}{ccc}
2 \cdot 1 & 2 \cdot-1 & 2 \cdot 2 \\
2 \cdot 3 & 2 \cdot 1 & 2 \cdot 4
\end{array}\right]=\left[\begin{array}{ccc}
2 & -2 & 4 \\
6 & 2 & 8
\end{array}\right]
$$

Row-column multiplication of $A \mathbf{x}$

Fact

Let A be an $m \times n$ matrix and let $\mathbf{x} \in \mathbb{R}^{n}$. Then

$$
A \mathbf{x}=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right] .
$$

Row-column multiplication of $A x$

Fact

Let A be an $m \times n$ matrix and let $\mathbf{x} \in \mathbb{R}^{n}$. Then

$$
A \mathbf{x}=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right] .
$$

Example

Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
5 & -1 & -1
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]
$$

Row-column multiplication of $A \mathbf{x}$

Fact

Let A be an $m \times n$ matrix and let $\mathbf{x} \in \mathbb{R}^{n}$. Then

$$
A \mathbf{x}=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right]
$$

Example

Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
5 & -1 & -1
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]
$$

Then using the above rule we compute very quickly that

$$
A \mathbf{x}=
$$

Row-column multiplication of $A \mathbf{x}$

Fact

Let A be an $m \times n$ matrix and let $\mathbf{x} \in \mathbb{R}^{n}$. Then

$$
A \mathbf{x}=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right]
$$

Example

Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
5 & -1 & -1
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]
$$

Then using the above rule we compute very quickly that

$$
A \mathbf{x}=\left[\begin{array}{c}
(1)(1)+(0)(3)+(2)(3) \\
(5)(1)+(-1)(3)+(-1)(3)
\end{array}\right] \text { Dan Crytser }+\frac{\text { Lecture 9: Intro to matrix algebra. Inverses. }}{}
$$

Row-column multiplication of $A \mathbf{x}$

Fact

Let A be an $m \times n$ matrix and let $\mathbf{x} \in \mathbb{R}^{n}$. Then

$$
A \mathbf{x}=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right] .
$$

Example

Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
5 & -1 & -1
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]
$$

Then using the above rule we compute very quickly that

$$
A \mathbf{x}=\left[\begin{array}{c}
(1)(1)+(0)(3)+(2)(3) \\
(5)(1)+(-1)(3)+(-1)(3)
\end{array}\right]=\left[\begin{array}{c}
7 \\
\text { Dan Cytser } \\
-1
\end{array}\right]
$$

Composing functions

You can multiply two matrices together to get a new matrix. To see where the definition of the matrix product comes from, let's consider the notion of composition of functions.

Composing functions

You can multiply two matrices together to get a new matrix. To see where the definition of the matrix product comes from, let's consider the notion of composition of functions.

Definition

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be two functions between vector spaces.

Composing functions

You can multiply two matrices together to get a new matrix. To see where the definition of the matrix product comes from, let's consider the notion of composition of functions.

Definition

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be two functions between vector spaces. Then the composition is the function $S \circ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ which is given by the rule

$$
(S \circ T)(\mathbf{x})=S(T(\mathbf{x}))
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.

Composing functions

You can multiply two matrices together to get a new matrix. To see where the definition of the matrix product comes from, let's consider the notion of composition of functions.

Definition

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be two functions between vector spaces. Then the composition is the function $S \circ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ which is given by the rule

$$
(S \circ T)(\mathbf{x})=S(T(\mathbf{x}))
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
Since multiplying by matrices is equivalent to applying linear transformations, we can define the product matrix to be the the matrix corresponding to the composition of the linear transformations.

Visualization of composition

$$
\begin{equation*}
A(B \mathbf{x})=(A B) \mathbf{x} \tag{1}
\end{equation*}
$$

See Fig. 3.

Composing linear transformations

The following fact comes from the definition of the product $A \mathbf{x}$:

Composing linear transformations

The following fact comes from the definition of the product $A \mathbf{x}$:

Fact

Let A be an $m \times n$ matrix. Then the k th column of A is just $A \mathbf{e}_{k}$, where $\mathbf{e}_{k} \in \mathbb{R}^{n}$ is the $k t h$ standard basis vector

Composing linear transformations

The following fact comes from the definition of the product $A \mathbf{x}$:

Fact

Let A be an $m \times n$ matrix. Then the k th column of A is just $A \mathbf{e}_{k}$, where $\mathbf{e}_{k} \in \mathbb{R}^{n}$ is the k th standard basis vector

We don't know what $A B$ means yet, but we definitely want
$(A B) \mathbf{x}$ to equal $A(B \mathbf{x})$
for all $\mathbf{x} \in \mathbb{R}^{n}$.

Composing linear transformations

The following fact comes from the definition of the product $A \mathbf{x}$:

Fact

Let A be an $m \times n$ matrix. Then the k th column of A is just $A \mathbf{e}_{k}$, where $\mathbf{e}_{k} \in \mathbb{R}^{n}$ is the k th standard basis vector

We don't know what $A B$ means yet, but we definitely want

$$
(A B) \mathbf{x} \text { to equal } A(B \mathbf{x})
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$. If we feed in standard basis vectors for \mathbf{x}, we get
k th column of $(A B)=A B \mathbf{e}_{k}=\mathbf{e}_{k}=A\left(B \mathbf{e}_{k}\right)=A(k$-th column of $B)$.

Composing linear transformations

The following fact comes from the definition of the product $A \mathbf{x}$:

Fact

Let A be an $m \times n$ matrix. Then the k th column of A is just $A \mathbf{e}_{k}$, where $\mathbf{e}_{k} \in \mathbb{R}^{n}$ is the k th standard basis vector

We don't know what $A B$ means yet, but we definitely want
$(A B) \mathbf{x}$ to equal $A(B \mathbf{x})$
for all $\mathbf{x} \in \mathbb{R}^{n}$. If we feed in standard basis vectors for \mathbf{x}, we get
k th column of $(A B)=A B \mathbf{e}_{k}=\mathbf{e}_{k}=A\left(B \mathbf{e}_{k}\right)=A(k$-th column of $B)$.
Thus we can compute the k th column of $A B$ by multiplying the k th column of B by A.

Multiplying matrices

Definition

Let A be an $n \times m$ matrix and let $B=\left[\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{p}\end{array}\right]$ be an $m \times p$ matrix.

Multiplying matrices

Definition

Let A be an $n \times m$ matrix and let $B=\left[\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{p}\end{array}\right]$ be an $m \times p$ matrix. Then the product $A B$ is the $n \times p$ matrix defined by

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}
\end{array}\right]
$$

where $A \mathbf{b}_{k}$ the product of A and the k-th column vector of B.

Multiplying matrices

Definition

Let A be an $n \times m$ matrix and let $B=\left[\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{p}\end{array}\right]$ be an $m \times p$ matrix. Then the product $A B$ is the $n \times p$ matrix defined by

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}
\end{array}\right]
$$

where $A \mathbf{b}_{k}$ the product of A and the k-th column vector of B.

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$.

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$. The columns of B are $\mathbf{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$. The columns of B are $\mathbf{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$.

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$. The
columns of B are $\mathbf{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$. The A-column of B products are

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$. The columns of B are $\mathbf{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$. The A-column of B products are
$A \mathbf{b}_{1}$

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$. The columns of B are $\mathbf{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$. The A-column of B products are

$$
A \mathbf{b}_{1}=\left[\begin{array}{ccc}
1 & 0 & 9 \\
-2 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$. The columns of B are $\mathbf{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$. The A-column of B products are

$$
A \mathbf{b}_{1}=\left[\begin{array}{ccc}
1 & 0 & 9 \\
-2 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
11 \\
3
\end{array}\right]
$$

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$. The columns of B are $\mathbf{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$. The A-column of B products are

$$
A \mathbf{b}_{1}=\left[\begin{array}{ccc}
1 & 0 & 9 \\
-2 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
11 \\
3
\end{array}\right]
$$

$A b_{2}$

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$. The columns of B are $\mathbf{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$. The A-column of B products are

$$
\begin{aligned}
& A \mathbf{b}_{1}=\left[\begin{array}{ccc}
1 & 0 & 9 \\
-2 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
11 \\
3
\end{array}\right] \\
& A \mathbf{b}_{2}=\left[\begin{array}{ccc}
1 & 0 & 9 \\
-2 & -3 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
\end{aligned}
$$

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$. The columns of B are $\mathbf{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$. The A-column of B products are

$$
\begin{gathered}
A \mathbf{b}_{1}=\left[\begin{array}{ccc}
1 & 0 & 9 \\
-2 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
11 \\
3
\end{array}\right] \\
A \mathbf{b}_{2}=\left[\begin{array}{ccc}
1 & 0 & 9 \\
-2 & -3 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
38 \\
3
\end{array}\right]
\end{gathered}
$$

Example of multiplication

Compute $A B$ for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ -2 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 2 \\ -1 & 3 \\ 1 & 4\end{array}\right]$. The
columns of B are $\mathbf{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$. The A-column of B products are

$$
\begin{aligned}
A \mathbf{b}_{1} & =\left[\begin{array}{ccc}
1 & 0 & 9 \\
-2 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
11 \\
3
\end{array}\right] \\
A \mathbf{b}_{2} & =\left[\begin{array}{ccc}
1 & 0 & 9 \\
-2 & -3 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
38 \\
3
\end{array}\right]
\end{aligned}
$$

Thus the product is

$$
A B=\left[\begin{array}{ll}
A \mathbf{b}_{1} & A \mathbf{b}_{2}
\end{array}\right]=\left[\begin{array}{cc}
11 & 38 \\
3 & 3
\end{array}\right]
$$

When can you multiply two matrices?

We have defined the product $A B$ of the as

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{n}
\end{array}\right],
$$

where n is the number of columns of B.

When can you multiply two matrices?

We have defined the product $A B$ of the as

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{n}
\end{array}\right],
$$

where n is the number of columns of B. This is only defined when the products $A \mathbf{b}_{k}$ are defined.

When can you multiply two matrices?

We have defined the product $A B$ of the as

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{n}
\end{array}\right],
$$

where n is the number of columns of B. This is only defined when the products $A \mathbf{b}_{k}$ are defined. Thus the number of entries in any column of B has to equal the number of columns of A.

Fact

Let A be an $n \times m$ matrix and let B be a $p \times q$ matrix. Then $A B$ is defined exactly when $m=p$.

When can you multiply two matrices?

We have defined the product $A B$ of the as

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{n}
\end{array}\right],
$$

where n is the number of columns of B. This is only defined when the products $A \mathbf{b}_{k}$ are defined. Thus the number of entries in any column of B has to equal the number of columns of A.

Fact

Let A be an $n \times m$ matrix and let B be a $p \times q$ matrix. Then $A B$ is defined exactly when $m=p$.

When can you multiply two matrices?

We have defined the product $A B$ of the as

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{n}
\end{array}\right],
$$

where n is the number of columns of B. This is only defined when the products $A \mathbf{b}_{k}$ are defined. Thus the number of entries in any column of B has to equal the number of columns of A.

Fact

Let A be an $n \times m$ matrix and let B be a $p \times q$ matrix. Then $A B$ is defined exactly when $m=p$.

Can we form the product $A B$ if A is 2×4 and B is 4×5 ?

When can you multiply two matrices?

We have defined the product $A B$ of the as

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{n}
\end{array}\right],
$$

where n is the number of columns of B. This is only defined when the products $A \mathbf{b}_{k}$ are defined. Thus the number of entries in any column of B has to equal the number of columns of A.

Fact

Let A be an $n \times m$ matrix and let B be a $p \times q$ matrix. Then $A B$ is defined exactly when $m=p$.

Can we form the product $A B$ if A is 2×4 and B is 4×5 ? What about $B A$ for such A and B ?

When can you multiply two matrices?

We have defined the product $A B$ of the as

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{n}
\end{array}\right],
$$

where n is the number of columns of B. This is only defined when the products $A \mathbf{b}_{k}$ are defined. Thus the number of entries in any column of B has to equal the number of columns of A.

Fact

Let A be an $n \times m$ matrix and let B be a $p \times q$ matrix. Then $A B$ is defined exactly when $m=p$.

Can we form the product $A B$ if A is 2×4 and B is 4×5 ? What about $B A$ for such A and B ? What does this say about the products $A B$ and $B A$ for matrices?

Computing the product

There is a helpful rule for computing individual entries of a matrix product $A B$.

Computing the product

There is a helpful rule for computing individual entries of a matrix product $A B$.

Fact

If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then the
(i, j)-entry of $A B$, for $1 \leq i \leq m$ and $1 \leq j \leq p$, is defined by
$(A B)_{i j}=$

Computing the product

There is a helpful rule for computing individual entries of a matrix product $A B$.

Fact

If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then the (i, j)-entry of $A B$, for $1 \leq i \leq m$ and $1 \leq j \leq p$, is defined by

$$
(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Computing the product

There is a helpful rule for computing individual entries of a matrix product $A B$.

Fact

If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then the (i, j)-entry of $A B$, for $1 \leq i \leq m$ and $1 \leq j \leq p$, is defined by

$$
(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Those of you familiar with dot products/inner products will recognize this as the dot product of the i th row of A with the j th column of B.

Row-column: example

The row-column rule is useful in extracting entries from products that are unwieldy to fully compute.

Row-column: example

The row-column rule is useful in extracting entries from products that are unwieldy to fully compute.

Example

$$
\text { Let } A=\left[\begin{array}{ccccc}
15 & -8 & 20 & 30 & 2 \\
-4 & 7 & 13 & 11 & 6
\end{array}\right] \text { and } \text {. } \begin{gathered}
B=\left[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11 & 12 & 13 & 14 \\
15 & 16 & 17 & 18 & 19 & 20 & 21 \\
22 & 23 & 24 & 25 & 26 & 27 & 28 \\
29 & 30 & 31 & 32 & 33 & 34 & 35
\end{array}\right] .
\end{gathered}
$$

Row-column: example

The row-column rule is useful in extracting entries from products that are unwieldy to fully compute.

Example

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ccccc}
15 & -8 & 20 & 30 & 2 \\
-4 & 7 & 13 & 11 & 6
\end{array}\right] \text { and } \\
& B=\left[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11 & 12 & 13 & 14 \\
15 & 16 & 17 & 18 & 19 & 20 & 21 \\
22 & 23 & 24 & 25 & 26 & 27 & 28 \\
29 & 30 & 31 & 32 & 33 & 34 & 35
\end{array}\right] .
\end{aligned}
$$

Then the product $A B$ is a 2×7 matrix. What is the (2,4)-th entry?

Row-column: example

The row-column rule is useful in extracting entries from products that are unwieldy to fully compute.

Example

$$
\text { Let } A=\left[\begin{array}{ccccc}
15 & -8 & 20 & 30 & 2 \\
-4 & 7 & 13 & 11 & 6
\end{array}\right] \text { and } .
$$

Then the product $A B$ is a 2×7 matrix. What is the $(2,4)$-th entry? Just add up the products of the entries in the 2 nd row of A and the 4 th column of B.
$(A B)_{2,4}=(-4)(4)+(7)(11)+(13)(18)+(11)(25)+(6)(32)=762$.

Rows in products

Let A be an $m \times n$ matrix and B be a $n \times p$ matrix.

Rows in products

Let A be an $m \times n$ matrix and B be a $n \times p$ matrix. We can use the rule

$$
(A B)_{i, j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

to write the i th row of $A B$ as
$\operatorname{row}_{i}(A B)$

Rows in products

Let A be an $m \times n$ matrix and B be a $n \times p$ matrix. We can use the rule

$$
(A B)_{i, j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

to write the ith row of $A B$ as
$\operatorname{row}_{i}(A B)=\left[\begin{array}{llll}\left(\sum_{k=1}^{n} a_{i k} b_{k 1}\right) & \left(\sum_{k=1}^{n} a_{i k} b_{k 2}\right) & \ldots & \left(\sum_{k=1}^{n} a_{i k} b_{k p}\right)\end{array}\right]$

Rows in products

Let A be an $m \times n$ matrix and B be a $n \times p$ matrix. We can use the rule

$$
(A B)_{i, j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

to write the ith row of $A B$ as

$$
\operatorname{row}_{i}(A B)=\left[\begin{array}{llll}
\left(\sum_{k=1}^{n} a_{i k} b_{k 1}\right) & \left(\sum_{k=1}^{n} a_{i k} b_{k 2}\right) & \ldots & \left(\sum_{k=1}^{n} a_{i k} b_{k p}\right)
\end{array}\right]
$$

You can check that this is equal to the product

$$
\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \ldots & a_{i n}
\end{array}\right]\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 p} \\
b_{21} & b_{22} & \ldots & b_{2 p} \\
\vdots & \vdots & \vdots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n p}
\end{array}\right]
$$

Rows in products

Let A be an $m \times n$ matrix and B be a $n \times p$ matrix. We can use the rule

$$
(A B)_{i, j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

to write the ith row of $A B$ as

$$
\operatorname{row}_{i}(A B)=\left[\begin{array}{llll}
\left(\sum_{k=1}^{n} a_{i k} b_{k 1}\right) & \left(\sum_{k=1}^{n} a_{i k} b_{k 2}\right) & \ldots & \left(\sum_{k=1}^{n} a_{i k} b_{k p}\right)
\end{array}\right]
$$

You can check that this is equal to the product

$$
\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \ldots & a_{i n}
\end{array}\right]\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 p} \\
b_{21} & b_{22} & \ldots & b_{2 p} \\
\vdots & \vdots & \vdots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n p}
\end{array}\right]=\operatorname{row}_{i}(A) \cdot B .
$$

Properties of matrix multiplication

Matrix multiplication "inherits" a lot of the nice properties of matrix-vector products.

Definition

Here and in every possible future lecture, for any integer $m \geq 1$ we denote by I_{m} the $m \times m$ identity matrix

$$
I_{m}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

which is the unique matrix which satisfies $I_{m} \mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{m}$.

Properties of matrix multiplication

Theorem

Let A be an $m \times n$ matrix, and let B and C have sizes for which the products below are defined.
(1) $A(B C)=(A B) C$ (associativity of matrix mult.)

Properties of matrix multiplication

Theorem

Let A be an $m \times n$ matrix, and let B and C have sizes for which the products below are defined.
(1) $A(B C)=(A B) C$ (associativity of matrix mult.)
(2) $A(B+C)=A B+A C$ (left distribution)

Properties of matrix multiplication

Theorem

Let A be an $m \times n$ matrix, and let B and C have sizes for which the products below are defined.
(1) $A(B C)=(A B) C$ (associativity of matrix mult.)
(2) $A(B+C)=A B+A C$ (left distribution)
(3) $(A+B) C=A C+B C$ (right distribution)

Properties of matrix multiplication

Theorem

Let A be an $m \times n$ matrix, and let B and C have sizes for which the products below are defined.
(1) $A(B C)=(A B) C$ (associativity of matrix mult.)
(2) $A(B+C)=A B+A C$ (left distribution)
(3) $(A+B) C=A C+B C$ (right distribution)
(9) $r(A B)=(r A) B=A(r B)$ for any scalar $r \in \mathbb{R}$

Properties of matrix multiplication

Theorem

Let A be an $m \times n$ matrix, and let B and C have sizes for which the products below are defined.
(1) $A(B C)=(A B) C$ (associativity of matrix mult.)
(2) $A(B+C)=A B+A C$ (left distribution)
(3) $(A+B) C=A C+B C$ (right distribution)
(9) $r(A B)=(r A) B=A(r B)$ for any scalar $r \in \mathbb{R}$
(5) $I_{m} A=A=A I_{n}$ (multiplicative identity)

Properties of matrix multiplication

Theorem

Let A be an $m \times n$ matrix, and let B and C have sizes for which the products below are defined.
(1) $A(B C)=(A B) C$ (associativity of matrix mult.)
(2) $A(B+C)=A B+A C$ (left distribution)
(3) $(A+B) C=A C+B C$ (right distribution)
(9) $r(A B)=(r A) B=A(r B)$ for any scalar $r \in \mathbb{R}$
(5) $I_{m} A=A=A I_{n}$ (multiplicative identity)

Proof.

If you want to check an equation of matrices it's generally easiest to show that the entries are the same.

Properties of matrix multiplication

Theorem

Let A be an $m \times n$ matrix, and let B and C have sizes for which the products below are defined.
(1) $A(B C)=(A B) C$ (associativity of matrix mult.)
(2) $A(B+C)=A B+A C$ (left distribution)
(3) $(A+B) C=A C+B C$ (right distribution)
(9) $r(A B)=(r A) B=A(r B)$ for any scalar $r \in \mathbb{R}$
(3) $I_{m} A=A=A I_{n}$ (multiplicative identity)

Proof.

If you want to check an equation of matrices it's generally easiest to show that the entries are the same. You can do this for all the above identities using the row-column rule for computing entries in matrix products.

Non-commutative algebra

If you multiply two real numbers x and y, then they commute:

$$
x y=y x
$$

Non-commutative algebra

If you multiply two real numbers x and y, then they commute:

$$
x y=y x
$$

It is very noteworthy that this does not happen when you multiply matrices.

Non-commutative algebra

If you multiply two real numbers x and y, then they commute:

$$
x y=y x
$$

It is very noteworthy that this does not happen when you multiply matrices. As we saw, the product $A B$ may be defined while the product $B A$ is not.

Non-commutative algebra

If you multiply two real numbers x and y, then they commute:

$$
x y=y x
$$

It is very noteworthy that this does not happen when you multiply matrices. As we saw, the product $A B$ may be defined while the product $B A$ is not. But even when $A B$ and $B A$ are both defined (which, on thinking, forces A and B to be square matrices of the same size), they need not be equal.

Non-commutative algebra

If you multiply two real numbers x and y, then they commute:

$$
x y=y x
$$

It is very noteworthy that this does not happen when you multiply matrices. As we saw, the product $A B$ may be defined while the product $B A$ is not. But even when $A B$ and $B A$ are both defined (which, on thinking, forces A and B to be square matrices of the same size), they need not be equal.

Example

Let $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

Non-commutative algebra

If you multiply two real numbers x and y, then they commute:

$$
x y=y x
$$

It is very noteworthy that this does not happen when you multiply matrices. As we saw, the product $A B$ may be defined while the product $B A$ is not. But even when $A B$ and $B A$ are both defined (which, on thinking, forces A and B to be square matrices of the same size), they need not be equal.

Example

Let $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Then

$$
A B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Non-commutative algebra

If you multiply two real numbers x and y, then they commute:

$$
x y=y x
$$

It is very noteworthy that this does not happen when you multiply matrices. As we saw, the product $A B$ may be defined while the product $B A$ is not. But even when $A B$ and $B A$ are both defined (which, on thinking, forces A and B to be square matrices of the same size), they need not be equal.

Example

Let $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Then

$$
A B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

$$
B A=\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Other weird things about matrix multiplication

There are other weird things about matrix multiplication:
(1) You can have $A B=A C$ or $B A=C A$ and yet $B \neq C$.

Other weird things about matrix multiplication

There are other weird things about matrix multiplication:
(1) You can have $A B=A C$ or $B A=C A$ and yet $B \neq C$. For example, if $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, then $I_{2} A=A A$, and yet $I_{2} \neq A$.

Other weird things about matrix multiplication

There are other weird things about matrix multiplication:
(1) You can have $A B=A C$ or $B A=C A$ and yet $B \neq C$. For example, if $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, then $I_{2} A=A A$, and yet $I_{2} \neq A$.
(2) You can have $A B=0$ with both A and B nonzero.

Other weird things about matrix multiplication

There are other weird things about matrix multiplication:
(1) You can have $A B=A C$ or $B A=C A$ and yet $B \neq C$. For example, if $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, then $I_{2} A=A A$, and yet $I_{2} \neq A$.
(2) You can have $A B=0$ with both A and B nonzero. For example $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.

The only time we can multiply a matrix A by itself and form the product $A A$ is if the number of columns of A equals the number of rows of A, i.e. A is a square matrix.

The only time we can multiply a matrix A by itself and form the product $A A$ is if the number of columns of A equals the number of rows of A, i.e. A is a square matrix. In the case that A is a square matrix, we can multiply it by itself any (positive) number k of times:

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

Powers of a matrix

The only time we can multiply a matrix A by itself and form the product $A A$ is if the number of columns of A equals the number of rows of A, i.e. A is a square matrix. In the case that A is a square matrix, we can multiply it by itself any (positive) number k of times:

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

Example

Let $A=\left[\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right]$.

Powers of a matrix

The only time we can multiply a matrix A by itself and form the product $A A$ is if the number of columns of A equals the number of rows of A, i.e. A is a square matrix. In the case that A is a square matrix, we can multiply it by itself any (positive) number k of times:

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

Example

Let $A=\left[\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right]$. Then you can check that for any integer $k \geq 1$

$$
A^{k}=\left[\begin{array}{cc}
2^{k} & 2^{k} \\
0 & 0
\end{array}\right]
$$

Transpose

There is a kinda obvious operation that you can do with matrices that we are going to use a lot later.

Transpose

There is a kinda obvious operation that you can do with matrices that we are going to use a lot later.

Definition

Let A be an $m \times n$ matrix. Then the transpose of A is the $n \times m$ matrix (note the reversal) denoted by A^{T} with $\left(A^{T}\right)_{i j}:=A_{j i}$.

Transpose

There is a kinda obvious operation that you can do with matrices that we are going to use a lot later.

Definition

Let A be an $m \times n$ matrix. Then the transpose of A is the $n \times m$ matrix (note the reversal) denoted by A^{T} with $\left(A^{T}\right)_{i j}:=A_{j i}$. That is, the (i, j)-entry of A^{T} is the (j, i)-entry of A.

Transpose

There is a kinda obvious operation that you can do with matrices that we are going to use a lot later.

Definition

Let A be an $m \times n$ matrix. Then the transpose of A is the $n \times m$ matrix (note the reversal) denoted by A^{T} with $\left(A^{T}\right)_{i j}:=A_{j i}$. That is, the (i, j)-entry of A^{T} is the (j, i)-entry of A.

Put less fancily, the transpose is what you get when you "flip" the matrix along the diagonal.

Transpose

There is a kinda obvious operation that you can do with matrices that we are going to use a lot later.

Definition

Let A be an $m \times n$ matrix. Then the transpose of A is the $n \times m$ matrix (note the reversal) denoted by A^{T} with $\left(A^{T}\right)_{i j}:=A_{j i}$. That is, the (i, j)-entry of A^{T} is the (j, i)-entry of A.

Put less fancily, the transpose is what you get when you "flip" the matrix along the diagonal.

Example

Let $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]$.

Transpose

There is a kinda obvious operation that you can do with matrices that we are going to use a lot later.

Definition

Let A be an $m \times n$ matrix. Then the transpose of A is the $n \times m$ matrix (note the reversal) denoted by A^{T} with $\left(A^{T}\right)_{i j}:=A_{j i}$. That is, the (i, j)-entry of A^{T} is the (j, i)-entry of A.

Put less fancily, the transpose is what you get when you "flip" the matrix along the diagonal.

Example

Let $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]$. Then $A^{T}=\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right]$.

Properties of transpose

There's a bunch of simple properties of the tranpose operation $A \mapsto A^{T}$ that we record for posterity's sake.

Properties of transpose

There's a bunch of simple properties of the tranpose operation $A \mapsto A^{T}$ that we record for posterity's sake.

Theorem

Let A and B denote matrices, where in each case the sums or products are defined as they need to be.

Properties of transpose

There's a bunch of simple properties of the tranpose operation $A \mapsto A^{T}$ that we record for posterity's sake.

Theorem

Let A and B denote matrices, where in each case the sums or products are defined as they need to be.
(1) $\left(A^{T}\right)^{T}=A$ (flip twice, get back where you started)

Properties of transpose

There's a bunch of simple properties of the tranpose operation $A \mapsto A^{T}$ that we record for posterity's sake.

Theorem

Let A and B denote matrices, where in each case the sums or products are defined as they need to be.
(1) $\left(A^{T}\right)^{T}=A$ (flip twice, get back where you started)
(2) $(A+B)^{T}=A^{T}+B^{T}$

Properties of transpose

There's a bunch of simple properties of the tranpose operation $A \mapsto A^{T}$ that we record for posterity's sake.

Theorem

Let A and B denote matrices, where in each case the sums or products are defined as they need to be.
(1) $\left(A^{T}\right)^{T}=A$ (flip twice, get back where you started)
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) For any scalar, $(r A)^{T}=r\left(A^{T}\right)$

Properties of transpose

There's a bunch of simple properties of the tranpose operation $A \mapsto A^{T}$ that we record for posterity's sake.

Theorem

Let A and B denote matrices, where in each case the sums or products are defined as they need to be.
(1) $\left(A^{T}\right)^{T}=A$ (flip twice, get back where you started)
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) For any scalar, $(r A)^{T}=r\left(A^{T}\right)$
(4) $(A B)^{T}=B^{T} A^{T}$

Properties of transpose

There's a bunch of simple properties of the tranpose operation $A \mapsto A^{T}$ that we record for posterity's sake.

Theorem

Let A and B denote matrices, where in each case the sums or products are defined as they need to be.
(1) $\left(A^{T}\right)^{T}=A$ (flip twice, get back where you started)
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) For any scalar, $(r A)^{T}=r\left(A^{T}\right)$
(4) $(A B)^{T}=B^{T} A^{T}$

Properties of transpose

There's a bunch of simple properties of the tranpose operation $A \mapsto A^{T}$ that we record for posterity's sake.

Theorem

Let A and B denote matrices, where in each case the sums or products are defined as they need to be.
(1) $\left(A^{T}\right)^{T}=A$ (flip twice, get back where you started)
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) For any scalar, $(r A)^{T}=r\left(A^{T}\right)$
(9) $(A B)^{T}=B^{T} A^{T}$

Most of these are really straightforward computations on entries [$a_{i j}$]. The last one is a little bit of work, and it's worth remembering that in general

$$
(A B)^{T} \neq A^{T} B^{T}
$$

