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Example

Let T : R2 → R3 be the linear transformation defined by

T

([
x1
x2

])
=

 x1 + x2
2x1
3x2

 .

Let’s find the matrix A such that T (x) = Ax for all x ∈ R2. Note
that A must have 2 columns (domain R2) and 3 rows (domain R3).
The two basis vectors in the domain are e1, e2. Their images are

T (e1) =

 1
2
0

 , T (e2) =

 1
0
3

 .
So A has those vectors as columns

A =

 1 1
2 0
0 3

 .
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We can check to see we got the right answer:

A

[
x1
x2

]
= x1

 1
2
0

+ x2

 1
0
3

 =

 x1 + x2
2x1
3x2

 = T

([
x1
x2

])
.

Thus T (x) = Ax for all x ∈ R2. There’s a fancy term for the
matrix we’ve cooked up.

Definition

If T : Rn → Rm is a linear transformation and e1, e2, . . . , en are
the standard basis vectors in Rn, then the matrix

A =
[
T (e1) T (e2) . . . T (en)

]
which satisfies T (x) = Ax for all x ∈ Rn is called the standard
matrix for T .
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Matrices and visualization of linear transformations

There are a few different types of linear transformations R2 → R2

that we can describe with words (“rotate the plane
counterclockwise by π/2”) and then we get the matrix just by

tracking the image of the basis vectors e1 =

[
1
0

]
and

e2 =

[
0
1

]
.

The book has a big catalog of such transformations.
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Reflection through x1 = x2

Suppose that T reflects through the line x1 = x2.

What does T
look like? What is the matrix of T? The image of e1 is e2 and
vice versa.
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Contractions. Expansions

You can stretch/squeeze the plane in one direction while keeping
the other direction fixed.

For example, let’s say we stretched the
plane along the x-axis by a factor of 2, but didn’t distort it in the
y -axis. What would the matrix look like? The image of e1 is 2e1
and e2 doesn’t change. The graphic on the right represents this
situation, where we have k = 2.
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Shear transformations

Shear transformations add some multiple of one basis vector to
another basis vector (not to be confused with row operations).

For
example e1 7→ e1 + 2e2 and e2 7→ e2.
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Onto

Definition

A function T : Rn → Rm is said to be onto if the range is the
codomain, that is, for each vector y ∈ Rm there is at least one
x ∈ Rn with T (x) = y.

The preceding definition is supposed to address the potential
difference between range and codomain.

Example

Let T : R2 → R2 be given by T (x1, x2) = (x1, 0). Then T is not
onto: the range is the x-axis, an object in mathematics noteworthy
for not being the entire plane. The reflection across the line
x1 = x2 given by T (x1, x2) = (x2, x1) is onto: every vector in R2 is
the reflection of some other vector (that other vector is its
reflection)

Dan Crytser Lecture 8: The matrix of a linear transformation. Applications



Onto

Definition

A function T : Rn → Rm is said to be onto if the range is the
codomain, that is, for each vector y ∈ Rm there is at least one
x ∈ Rn with T (x) = y.

The preceding definition is supposed to address the potential
difference between range and codomain.

Example

Let T : R2 → R2 be given by T (x1, x2) = (x1, 0). Then T is not
onto: the range is the x-axis, an object in mathematics noteworthy
for not being the entire plane. The reflection across the line
x1 = x2 given by T (x1, x2) = (x2, x1) is onto: every vector in R2 is
the reflection of some other vector (that other vector is its
reflection)

Dan Crytser Lecture 8: The matrix of a linear transformation. Applications



Onto

Definition

A function T : Rn → Rm is said to be onto if the range is the
codomain, that is, for each vector y ∈ Rm there is at least one
x ∈ Rn with T (x) = y.

The preceding definition is supposed to address the potential
difference between range and codomain.

Example

Let T : R2 → R2 be given by T (x1, x2) = (x1, 0). Then T is not
onto: the range is the x-axis, an object in mathematics noteworthy
for not being the entire plane.

The reflection across the line
x1 = x2 given by T (x1, x2) = (x2, x1) is onto: every vector in R2 is
the reflection of some other vector (that other vector is its
reflection)

Dan Crytser Lecture 8: The matrix of a linear transformation. Applications



Onto

Definition

A function T : Rn → Rm is said to be onto if the range is the
codomain, that is, for each vector y ∈ Rm there is at least one
x ∈ Rn with T (x) = y.

The preceding definition is supposed to address the potential
difference between range and codomain.

Example

Let T : R2 → R2 be given by T (x1, x2) = (x1, 0). Then T is not
onto: the range is the x-axis, an object in mathematics noteworthy
for not being the entire plane. The reflection across the line
x1 = x2 given by T (x1, x2) = (x2, x1) is onto: every vector in R2 is
the reflection of some other vector (that other vector is its
reflection)

Dan Crytser Lecture 8: The matrix of a linear transformation. Applications



Onto

Definition

A function T : Rn → Rm is said to be onto if the range is the
codomain, that is, for each vector y ∈ Rm there is at least one
x ∈ Rn with T (x) = y.

The preceding definition is supposed to address the potential
difference between range and codomain.

Example

Let T : R2 → R2 be given by T (x1, x2) = (x1, 0). Then T is not
onto: the range is the x-axis, an object in mathematics noteworthy
for not being the entire plane. The reflection across the line
x1 = x2 given by T (x1, x2) = (x2, x1) is onto: every vector in R2 is
the reflection of some other vector (that other vector is its
reflection)

Dan Crytser Lecture 8: The matrix of a linear transformation. Applications



Onto, ctd.

The quality of being onto has to do with existence of solutions: a
linear transformation T given by T (x) = Ax is onto if Ax = b is
consistent for all b ∈ Rm.

Reviewing the following theorem allows
us to describe onto linear transformations with echelon forms. We
already saw a version of this theorem

Theorem

Let A be an m × n matrix. Then Ax = b is consistent for all
b ∈ Rm if and only if every row in the echelon form of A (not
augmented) has a nonzero entry.

We can reformulate it in terms of linear transformations.

Theorem

Let T (x) = Ax. Then T is onto if and only if every row in the
echelon form of A (non-augmented) has a nonzero entry.This
happens if and only if the columns of A span Rm.
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One-to-one

Definition

A function T : Rn → Rm is said to be one-to-one if T (x) = T (x′)
implies x = x′ for vectors x, x′ ∈ Rn.

That is, T is one-to-one if
two vectors in the domain have the same image under T only
when they are equal.

Example

The map T : R3 → R3 given by T (x1, x2, x3) = (x1, x2, 0) is not
one-to-one: T (0, 0, 1) = T (0, 0, 0) = 0 and yet the vectors are not
equal. The map T : R2 → R3 given by
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One-to-one, ctd.

The quality of being one-to-one has to do with uniqueness of
solutions: the linear transformation T given by T (x) = Ax if
whenever Ax = b is consistent it has unique solutions.

Theorem

Let A be a matrix. Then T is one-to-one if and only if every
column in the echelon form of A (non-augmented) has a pivot.
This happens if and only if the columns of A are linearly
independent.

Dan Crytser Lecture 8: The matrix of a linear transformation. Applications
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Onto/one-to-one: echelon form

We can summarize all of this in one biggish theorem:

Theorem

Let A be an m × n matrix. The linear transformation
T : Rn → Rm given by T (x) = Ax is

1 onto if and only if every row of the echelon form of A has a
pivotif and only if the columns of A span Rm

2 one-to-one if and only if every column of the echelon form of
A has a pivotif and only if the columns of A are linearly
independent

You can see that the only way that T can be both onto and
one-to-one is if m = n.
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Example

Example

Let A =

 1 7
2 3
4 2

 and define T : R2 → R3 by T (x) = Ax.

Is T

onto? Is T one-to-one?
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APPLICATIONS
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Voltage loops

1 A closed loop in a network has three things affiliated to it:

some voltage sources, some resistors, and an oriented
(clockwise or counter-clockwise) current.

2 Each of these has a weight measuring how much voltage,
resistance, or current there is (one current for the whole loop).

3 A voltage source is positive for a loop if the the current flows
from the positive (long) terminal to the negative (short)
terminal.
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Ohm’s law

OHM’S LAW: If the current of I amps passes across a resistor of
R ohms, then the voltage drops by V = RI volts.

Passing from A to B the sum of the voltage drops is 3I1 − 3I2.
(Notice that the voltage source in the first loop is positive.)
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Kirchhoff’s law

Kirchhoff’s law governs how much current and resistance (so, how
much voltage dropped) can be in an electrical network with given
voltage sources.

It’s basically a balancing between the voltage lost
through voltage drops and the voltage put into loops from voltage
sources.

KIRCHHOFF’S LAW: If you add up the voltage drops in a loop
that equals the sum of the voltage sources in the loop.

Remember: when adding voltage sources you have to check to see
if they’re positive (current runs positive terminal to negative
terminal) or negative (vice versa).
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Kirchhoff: example

Let’s look at this.

First loop: Voltage source=30. Voltage drop in
first loop is 41 + (3I1 − 3I2) + 4I1 = 11I1 − 3I2. Must equal voltage
sources in first loop = 30. So the equation for the first loop is
11I1 − 3I2 = 30.
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Kirchhoff: example

11I1 − 3I2 = 30 (1)

−3I1 + 6I2 − I3 = 5 (2)

−I2 + 3I3 = −25 (3)
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Kirchhoff: example

11I1 − 3I2 = 30 (4)

−3I1 + 6I2 − I3 = 5 (5)

−I2 + 3I3 = −25 (6)

Has a unique solution: I1 = 3 amps, I2 = 1 amps, I3 = −8 amps.

The negative I3 answer says that the current flows clockwise in
loop 3.
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Difference equations

In many situations you will be measuring some system and all the
information about the system at time kwill be contained in some
vector xk .

(Could be age, salary, population, microbe count,
whatever).

Definition

Suppose your data take the form of vectors xk ∈ Rn, where
k = 0, 1, 2, . . .s. If there is an n × n matrix A such that
x1 = Ax0, x2 = Ax1 and generally xk+1 = Axk (*) , we say that
equation (*) is a linear difference equation (some people call it a
recursion relation, because it gives new measurement in terms of
the old measurement).
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Difference equations and population

You can study population dynamics using difference
equations.

Let’s say that in the nation of Zembla there is one city
and one suburb. The population distribution in Zembla in year 0
can be recorded in a vector in R2:

x0 =

[
r0
s0

]
where r0 is the population in the city in year 0 and s0 is the
population in the suburb in year 0. The vectors

x1 =

[
r1
s1

]
, x2 =

[
r2
s2

]
record the popluation distribution in year

1, year 2, etc.
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Difference equations and population

Let’s say that in any one year 95 percent of city people remain in
the city and 5 percent of city people go to the suburb.

Let’s say in
the same time frame, 97 percent of suburb people remain in the
suburb and 3 percent go to the city.
Thus, after year 0 we can see what the population looks like in
year 1:

r1 = .95r0 + .03s0

and
s1 = .5r0 + .97s0

Thus [
r1
s1

]
= r0

[
.95
.05

]
+

[
.03
.97

]
=

[
.95 .03
.05 .97

]
.
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The Transition Matrix

Now we can write down

x1 =

[
.95 .03
.05 .97

]
x0

and

x2 =

[
.95 .03
.05 .97

]
x1

and, in general,

xk =

[
.95 .03
.05 .97

]
xk−1.

If A is the matrix above, then we can write xk = Axk−1. You can
use this to predict the future.
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